Summary The Distance Constraint Model (DCM) is an ensemble-based biophysical model that integrates thermodynamic and mechanical viewpoints of protein structure. The DCM outputs a large number of structural characterizations that collectively allow for Quantified Stability/Flexibility Relationships (QSFR) to be identified and compared across protein families. Using five metallo-β-lactamases (MBLs) as a representative set, we demonstrate how QSFR properties are both conserved and varied across protein families. Similar to our characterizations on other protein families, the backbone flexibility of the five MBLs are overall visually conserved, yet there are interesting specific quantitative differences. For example, the plasmid-encoded NDM-1 enzyme, which leads to a fast spreading drug-resistant version of Klebsiella Pneumoniae, has several regions of significantly increased rigidity relative to the other four. In addition, the set of intramolecular couplings within NDM-1 are also atypical. While long-range couplings frequently vary significantly across protein families, NDM-1 is distinct because it has limited correlated flexibility, which is isolated within the active site S3/S4 and S11/H6 loops. These loops are flexibly correlated in the other members, suggesting it is important to function, but the others also have significant amounts of correlated flexibility throughout the rest of their structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.