Background: Microarrays of plant-derived oligosaccharides are potentially powerful tools for the high throughput discovery and screening of antibodies, enzymes, and carbohydrate-binding proteins. Results: Oligosaccharide microarrays were produced, and their utility was demonstrated in several applications. Conclusion:A new generation of oligosaccharide microarrays will make an important contribution to plant glycomic research. Significance: High throughput screening technology enables the more effective production of carbohydrate active enzymes and molecular probes.
Starch is the main storage polysaccharide in cereals and the major source of calories in the human diet. It is synthesized by a panel of enzymes including five classes of starch synthases (SSs). While the overall starch synthase (SS) reaction is known, the functional differences between the five SS classes are poorly understood. Much of our knowledge comes from analyzing mutant plants with altered SS activities, but the resulting data are often difficult to interpret as a result of pleitropic effects, competition between enzymes, overlaps in enzyme activity and disruption of multi-enzyme complexes. Here we provide a detailed biochemical study of the activity of all five classes of SSs in barley endosperm. Each enzyme was produced recombinantly in E. coli and the properties and modes of action in vitro were studied in isolation from other SSs and other substrate modifying activities. Our results define the mode of action of each SS class in unprecedented detail; we analyze their substrate selection, temperature dependence and stability, substrate affinity and temporal abundance during barley development. Our results are at variance with some generally accepted ideas about starch biosynthesis and might lead to the reinterpretation of results obtained in planta. In particular, they indicate that granule bound SS is capable of processive action even in the absence of a starch matrix, that SSI has no elongation limit, and that SSIV, believed to be critical for the initiation of starch granules, has maltoligosaccharides and not polysaccharides as its preferred substrates.
Surface binding sites (SBSs) interact with carbohydrates outside of the enzyme active site. They are frequently situated on catalytic domains and are distinct from carbohydrate binding modules (CBMs). SBSs are found in a variety of enzymes and often seen in crystal structures. Notably about half of the > 45 enzymes (in 17 GH and two GT families) with an identified SBS are from GH13 and a few from GH77, both belonging to clan GH-H of carbohydrate active enzymes. The many enzymes of GH13 with SBSs provide an opportunity to analyse their distribution within this very large and diverse family. SBS containing enzymes in GH13 are spread among 15 subfamilies (two were not assigned a subfamily). Comparison of these SBSs reveals a complex evolutionary history with evidence of conservation of key residues and/or structural location between some SBSs, while others are found at entirely distinct structural locations, suggesting convergent evolution. An array of investigations of the two SBSs in barley α-amylase demonstrated they play different functional roles in binding and degradation of polysaccharides. MalQ from Escherichia coli is an α-1,4-glucanotransferase of GH77, a family that is known to have at least one member that contains an SBS. Whereas MalQ is a single domain enzyme lacking CBMs, its plant orthologue DPE2 contains two N-terminal CBM20s. Surface plasmon resonance binding studies showed that MalQ and DPE2 have a similar affinity for β-cyclodextrin and that MalQ binds malto-oligosaccharides of >DP4 at a second site in competition with β-cyclodextrin yielding a stoichiometry >1. This suggests that MalQ may have an SBS, though its structural location remains unknown.
The production of starch is essential for human nutrition and represents a major metabolic flux in the biosphere. The biosynthesis of starch in storage organs like barley endosperm operates via two main pathways using different substrates: starch synthases use ADP-glucose to produce amylose and amylopectin, the two major components of starch, whereas starch phosphorylase (Pho1) uses glucose-1-phosphate (G1P), a precursor for ADP-glucose production, to produce α-1,4 glucans. The significance of the Pho1 pathway in starch biosynthesis has remained unclear. To elucidate the importance of barley Pho1 (HvPho1) for starch biosynthesis in barley endosperm, we analyzed HvPho1 protein production and enzyme activity levels throughout barley endosperm development and characterized structure-function relationships of HvPho1. The molecular mechanisms underlying the initiation of starch granule biosynthesis, that is, the enzymes and substrates involved in the initial transition from simple sugars to polysaccharides, remain unclear. We found that HvPho1 is present as an active protein at the onset of barley endosperm development. Notably, purified recombinant protein can catalyze the de novo production of α-1,4-glucans using HvPho1 from G1P as the sole substrate. The structural properties of HvPho1 provide insights into the low affinity of HvPho1 for large polysaccharides like starch or amylopectin. Our results suggest that HvPho1 may play a role during the initiation of starch biosynthesis in barley.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.