Isoflurane stimulates the phosphorylation of survival signaling proteins in hypoxic neurons. The mechanism involves a moderate increase in [Ca2+]i from release of Ca from inositol triphosphate receptor-dependent intracellular stores. The increase in [Ca2+]i sets in motion signaling via Ras and the MAP kinase p42/44 pathway and the antiapoptotic factor Akt. Isoflurane neuroprotection thus involves intracellular signaling well known to suppress both excitotoxic and apoptotic/delayed cell death.
In an in vitro model of simulated ischemia, 1% isoflurane is of similar potency to 10 microm MK-801 in preventing delayed cell death. Modulation of glutamate excitotoxicity may contribute to the protective mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.