Approximating the set of reachable states of a dynamical system is an algorithmic yet mathematically rigorous way to reason about its safety. Although progress has been made in the development of efficient algorithms for affine dynamical systems, available algorithms still lack scalability to ensure their wide adoption in the industrial setting. While modern linear algebra packages are efficient for matrices with tens of thousands of dimensions, set-based image computations are limited to a few hundred. We propose to decompose reach set computations such that set operations are performed in low dimensions, while matrix operations like exponentiation are carried out in the full dimension. Our method is applicable both in dense-and discrete-time settings. For a set of standard benchmarks, it shows a speed-up of up to two orders of magnitude compared to the respective state-of-the art tools, with only modest losses in accuracy. For the dense-time case, we show an experiment with more than 10.000 variables, roughly two orders of magnitude higher than possible with previous approaches.
Abstract. Ultimate Automizer is a software verifier that generalizes proofs for traces to proofs for larger parts for the program. In recent years the portfolio of proof producers that are available to Ultimate has grown continuously. This is not only because more trace analysis algorithms have been implemented in Ultimate but also due to the continuous progress in the SMT community. In this paper we explain how Ultimate Automizer dynamically selects trace analysis algorithms and how the tool decides when proofs for traces are "good" enough for using them in the abstraction refinement. Verification ApproachUltimate Automizer (in the following called Automizer) is a software verifier that is able to check safety and liveness properties. The tool implements an automata-based [6] instance of the CEGAR scheme. In each iteration, we pick a trace (which is a sequence of statements) that leads from the initial location to the error location and check whether the trace is feasible (i.e., corresponds to an execution) or infeasible. If the trace is feasible, we report an error to the user; otherwise we compute a sequence of predicates along the trace as a proof of the trace's infeasibility. We call such a sequence of predicates a sequence of interpolants since each predicate "interpolates" between the set of reachable states and the set of states from which we cannot reach the error. In the refinement step of the CEGAR loop, we try to find all traces whose infeasibility can be shown with the given predicates and subtract these traces from the set of (potentially spurious) error traces that have not yet been analyzed. We use automata to represent sets of traces; hence the subtraction is implemented as an automata operation. The major difference to a classical CEGAR-based predicate abstraction is that we never have to do any logical reasoning (e.g., SMT solver calls) that involves predicates of different CEGAR iterations.We use this paper to explain how our tool obtains the interpolants that are used in the refinement step. The Ultimate program analysis framework
Abstract. Multiaffine hybrid automata (MHA) represent a powerful formalism to model complex dynamical systems. This formalism is particularly suited for the representation of biological systems which often exhibit highly non-linear behavior. In this paper, we consider the problem of parameter identification for MHA. We present an abstraction of MHA based on linear hybrid automata, which can be analyzed by the SpaceEx model checker. This abstraction enables a precise handling of time-dependent properties. We demonstrate the potential of our approach on a model of a genetic regulatory network and a myocyte model.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.