This paper introduces a novel local Volt/var control strategy in a low-voltage smart grid. Nowadays, various Volt/var local control strategies built on customer photovoltaic inverters, e.g., cosφ(P) and Q(U), are introduced to mitigate the upper voltage limit violations in feeders with high prosumer share. Nevertheless, although these strategies are further refined by including more local variables, their use is still very limited. In this study, the effects of a new concentrated Volt/var local control strategy in low-voltage grids are investigated. Concentrated var-sinks, e.g., coils-L(U), are set at the end of each violated feeder. The concentrated local control strategy L(U) is compared with the distributed cosφ(P) and Q(U) strategies. Initially, both control strategies are theoretically investigated, followed by simulations in a test feeder. Finally, the expected practical significance of the findings is verified through simulations in a real typical urban and rural grid. Additionally, the impact of the different local control strategies used in low-voltage grids on the behavior of the medium-voltage grid is analyzed. The results show that the concentrated Volt/var control strategy eliminates the violation of upper voltage limit even in longer feeders, where both distributed local strategies fail. In addition, the concentrated L(U) local control causes less reactive power exchange on the distribution transformer level than the distributed cosφ(P) and Q(U) strategies. Therefore, the reactive power exchange with the medium-voltage grid and thus the distribution transformer loading are smaller in the case of concentrated local control strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.