Synchronization of cells by Delta-Notch coupling regulates the collective period of the segmentation clock. Our identification of the first segmentation clock period mutants is a critical step toward a molecular understanding of temporal control in this system. We propose that collective control of period via delayed coupling may be a general feature of biological clocks.
Rhythmic and sequential subdivision of the elongating vertebrate embryonic body axis into morphological somites is controlled by an oscillating multicellular genetic network termed the segmentation clock. This clock operates in the presomitic mesoderm (PSM), generating dynamic stripe patterns of oscillatory gene-expression across the field of PSM cells. How these spatial patterns, the clock's collective period, and the underlying cellular-level interactions are related is not understood. A theory encompassing temporal and spatial domains of local and collective aspects of the system is essential to tackle these questions. Our delayed coupling theory achieves this by representing the PSM as an array of phase oscillators, combining four key elements: a frequency profile of oscillators slowing across the PSM; coupling between neighboring oscillators; delay in coupling; and a moving boundary describing embryonic axis elongation. This theory predicts that the segmentation clock's collective period depends on delayed coupling. We derive an expression for pattern wavelength across the PSM and show how this can be used to fit dynamic wildtype gene-expression patterns, revealing the quantitative values of parameters controlling spatial and temporal organization of the oscillators in the system. Our theory can be used to analyze experimental perturbations, thereby identifying roles of genes involved in segmentation.
The proteasome generates exact major histocompatibility complex (MHC) class I ligands as well as NH2-terminal-extended precursor peptides. The proteases responsible for the final NH2-terminal trimming of the precursor peptides had, until now, not been determined. By using specific selective criteria we purified two cytosolic proteolytic activities, puromycin-sensitive aminopeptidase and bleomycin hydrolase. These proteases could remove NH2-terminal amino acids from the vesicular stomatitis virus nucleoprotein cytotoxic T cell epitope 52-59 (RGYVYQGL) resulting, in combination with proteasomes, in the generation of the correct epitope. Our data provide evidence for the existence of redundant systems acting downstream of the proteasome in the antigen-processing pathway for MHC class I molecules.
We report the relaxation dynamics of keto and enol or keto-imino cytosine, photoexcited in the wavelength range of 260-290 nm. Three transients with femtosecond to hundreds of picoseconds lifetimes are observed for the biologically relevant keto tautomer and are assigned to internal conversion and excited-state tautomerization. Only two transients with femtosecond and picosecond lifetimes are identified for the enol or keto-imino tautomer and are assigned to internal conversion processes. The results are discussed in the context of published ab initio theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.