Helicobacter pyloriInfection is formally recognised as an infectious disease, an entity that is now included in the International Classification of Diseases 11th Revision. This in principle leads to the recommendation that all infected patients should receive treatment. In the context of the wide clinical spectrum associated with Helicobacter pylori gastritis, specific issues persist and require regular updates for optimised management.The identification of distinct clinical scenarios, proper testing and adoption of effective strategies for prevention of gastric cancer and other complications are addressed. H. pylori treatment is challenged by the continuously rising antibiotic resistance and demands for susceptibility testing with consideration of novel molecular technologies and careful selection of first line and rescue therapies. The role of H. pylori and antibiotic therapies and their impact on the gut microbiota are also considered.Progress made in the management of H. pylori infection is covered in the present sixth edition of the Maastricht/Florence 2021 Consensus Report, key aspects related to the clinical role of H. pylori infection were re-evaluated and updated. Forty-one experts from 29 countries representing a global community, examined the new data related to H. pylori infection in five working groups: (1) indications/associations, (2) diagnosis, (3) treatment, (4) prevention/gastric cancer and (5) H. pylori and the gut microbiota. The results of the individual working groups were presented for a final consensus voting that included all participants. Recommendations are provided on the basis of the best available evidence and relevance to the management of H. pylori infection in various clinical fields.
SummaryLevels of inflammatory mediators in circulation are known to increase with age, but the underlying cause of this age-associated inflammation is debated. We find that, when maintained under germ-free conditions, mice do not display an age-related increase in circulating pro-inflammatory cytokine levels. A higher proportion of germ-free mice live to 600 days than their conventional counterparts, and macrophages derived from aged germ-free mice maintain anti-microbial activity. Co-housing germ-free mice with old, but not young, conventionally raised mice increases pro-inflammatory cytokines in the blood. In tumor necrosis factor (TNF)-deficient mice, which are protected from age-associated inflammation, age-related microbiota changes are not observed. Furthermore, age-associated microbiota changes can be reversed by reducing TNF using anti-TNF therapy. These data suggest that aging-associated microbiota promote inflammation and that reversing these age-related microbiota changes represents a potential strategy for reducing age-associated inflammation and the accompanying morbidity.
Clonal haematopoiesis, which is highly prevalent in older individuals, arises from somatic mutations that endow a proliferative advantage to haematopoietic cells. Clonal haematopoiesis increases the risk of myocardial infarction and stroke independently of traditional risk factors 1 . Among the common genetic variants that give rise to clonal haematopoiesis, the JAK2 V617F (JAK2 VF ) mutation, which increases JAK-STAT signalling, occurs at a younger age and imparts the strongest risk of premature coronary heart disease 1,2 . Here we show increased proliferation of macrophages and prominent formation of necrotic cores in atherosclerotic lesions in mice that express Jak2 VF selectively in macrophages, and in chimeric mice that model clonal haematopoiesis. Deletion of the essential inflammasome components caspase 1 and 11, or of the pyroptosis executioner gasdermin D, reversed these adverse changes. Jak2 VF lesions showed increased expression of AIM2, oxidative DNA damage and DNA replication stress, and Aim2 deficiency reduced atherosclerosis. Single-cell RNA sequencing analysis of Jak2 VF lesions revealed a landscape that was enriched for inflammatory myeloid cells, which were suppressed by deletion of Gsdmd. Inhibition of the inflammasome product interleukin-1β reduced macrophage proliferation and necrotic formation while increasing the thickness of fibrous caps, indicating that it stabilized plaques. Our findings suggest that increased proliferation and glycolytic metabolism in Jak2 VF macrophages lead to DNA replication stress and activation of the AIM2 inflammasome, thereby aggravating atherosclerosis. Precise application of therapies that target interleukin-1β or specific inflammasomes according to clonal haematopoiesis status could substantially reduce cardiovascular risk.Atherosclerotic cardiovascular disease (ACVD) is the major cause of death and disability in the developed world 3 . A large burden of residual ACVD risk remains despite current therapies, including intensive lowering of low-density lipoprotein levels 3 , which highlights the need for new treatments. In the Canakinumab Antiinflammatory Thrombosis Outcomes Study (CANTOS), inhibition of IL-1β reduced cardiovascular events, thereby validating the contribution of inflammation to ACVD 4 . However, canakinumab therapy was associated with a small risk of infections and has not been approved for cardiovascular conditions. Thus, a more precise way to identify patients who may benefit most from anti-inflammatory therapy is required. Clonal haematopoiesis usually arises from somatic mutations in haematopoietic stem and progenitor cells (HSPCs) in one of four genes (TET2, ASXL1, DNMT3A or JAK2), which lead to clonal expansion of haematopoietic cells. The prevalence of clonal haematopoiesis increases with age, and it affects more than 10% of people who are over 70 years old 1 . Although clonal haematopoiesis conferred an increased risk of haematological malignancies of 0.5-1% per year, this modest increase was not nearly enough to account for the 40% incr...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.