Fluorescent DNA probes were prepared in a modular approach
using
the “click” post-synthetic modification strategy. The
new glycol-based module and DNA building block place just two carbons
between the phosphodiester bridges and anchor the dye by an additional
alkyne group. This creates a stereocenter in the middle of this artificial
nucleoside substitute. Both enantiomers and a variety of photostable
cyanine–styryl dyes as well as thiazole orange derivatives
were screened as “clicked” conjugates in different surrounding
DNA sequences. The combination of the (S)-configured
DNA anchor and the cyanylated cyanine–styryl dye shows the
highest fluorescence light-up effect of 9.2 and a brightness of approximately
11,000 M–1 cm–1. This hybridization
sensitivity and fluorescence readout were further developed utilizing
electron transfer and energy transfer processes. The combination of
the hybridization-sensitive DNA building block with the nucleotide
of 5-nitroindole as an electron acceptor and a quencher increases
the light-up effect to 20 with the DNA target and to 15 with the RNA
target. The fluorescence readout could significantly be enhanced to
values between 50 and 360 by the use of energy transfer to a second
DNA probe with commercially available dyes, like Cy3.5, Cy5, and Atto590,
as energy acceptors at the 5′-end. The latter binary probes
shift the fluorescent readout from the range of 500–550 nm
to the range of 610–670 nm. The optical properties make these
fluorescent DNA probes potentially useful for RNA imaging. Due to
the strong light-up effect, they will not require washing procedures
and will thus be suitable for live-cell imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.