The well-established silicon-on-insulator platform is very promising for large-scale integrated photonic and quantum photonic technologies due to the mature manufacturing technology and integration density. Here, we present an efficient and stable fiber-to-chip coupling, which enables the injection of single photons from telecom quantum dots into a silicon-on-insulator photonic chip. Two additional fibers further couple the chip to single-photon detectors. The approach chosen to achieve steady fiber-chip coupling is based on the use of grating couplers steadily packaged with angled single-mode fibers. Using this technique, coupling efficiencies between the fiber and the SOI chip as high as 69.1% per grating coupler (including the taper losses) are reached. The effective interface between the quantum light generated by quantum dots and the silicon components is verified via the measurement of the second-order correlation function using a Hanbury–Brown and Twiss setup. With g(2)(0)=0.051±0.001, it clearly proves the single-photon nature of the injected QD photons. This demonstrates the reliability of the interfacing method and opens the route to employ telecom quantum dots as non-classical light sources with high complexity silicon photonic functionalities.
A compact integrated and high-efficiency polarization mode interferometer in the 220-nm silicon-on-insulator platform is presented. Due to the operation with two polarization modes in a single waveguide, low propagation losses and high sensitivities combined with a small footprint are achieved. The designed and fabricated system with a 5-mm-long sensing region shows a measured excess loss of only 1.5 dB with an extinction ratio up to 30 dB, while its simulated homogeneous bulk sensitivity can exceed 8000 rad/RIU. The combination with a 90° hybrid readout system offers single wavelength operation with unambiguousness for phase shifts up to 2π and constant sensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.