The α-oxoaldehyde methylglyoxal is a ubiquitous and highly reactive metabolite known to be involved in aging- and diabetes-related diseases. If not detoxified by the endogenous glyoxalase system, it exerts its detrimental effects primarily by reacting with biopolymers such as DNA and proteins. We now demonstrate that during ketosis, another metabolic route is operative via direct non-enzymatic aldol reaction between methylglyoxal and the ketone body acetoacetate, leading to 3-hydroxyhexane-2,5-dione. This novel metabolite is present at a concentration of 10%-20% of the methylglyoxal level in the blood of insulin-starved patients. By employing a metabolite-alkyne-tagging strategy it is clarified that 3-hydroxyhexane-2,5-dione is further metabolized to non-glycating species in human blood. The discovery represents a new direction within non-enzymatic metabolism and within the use of alkyne-tagging for metabolism studies and it revitalizes acetoacetate as a competent endogenous carbon nucleophile.
Background: Ischemic stroke causes increased blood-brain barrier permeability and release of markers of axonal damage and inflammation. To investigate diagnostic and prognostic roles of neurofilament light chain (NF-L), we assessed levels of NF-L, S100B, interleukin-6 (IL-6), E-selectin, vascular endothelial growth factor-A (VEGF-A), vascular cell adhesion molecule-1 (VCAM-1), and intercellular adhesion molecule-1 (ICAM-1) in patients with acute ischemic stroke or transient ischemic attack (TIA) and healthy controls. Methods: We studied neurofilament (NF) expression in 2 cases of human postmortem ischemic stroke, representing infarcts aged 3-to >7-days. In a prospective study, we measured plasma NF-L and inflammatory markers <8 h of symptom onset and at 72 h in acute ischemic stroke (n = 31), TIA (n = 9), and healthy controls (n = 29). We assessed whether NF-L, S100B, and IL-6 were associated with clinical severity on admission (Scandinavian Stroke Scale, SSS), diagnosis of ischemic stroke vs. TIA, and functional outcome at 3 months (modified Rankin Scale, mRS). Results: NF expression increased in ischemic neurons and in the infarcted brain parenchyma after stroke. Plasma NF-L levels were higher in stroke patients than in TIA patients and healthy controls, but IL-6 levels were similar. Higher acute NF-L levels were associated with lower SSS scores at admission and higher mRS scores at 3 months. No correlation was observed between NF-L and S100B, NF-L and IL-6, nor between S100B or IL-6 and SSS or mRS. Compared to controls, stroke patients had significantly higher VEGF-A and VCAM-1 at <8 h that remained elevated at 72 h, with significantly higher VEGF-A at <8 h; ICAM-1 was significantly increased at <8 h, while S100B and E-selectin were unchanged. Nielsen et al. Acute Plasma NF-L Levels in Stroke Conclusions: Plasma NF-L levels, but not IL-6 and S100B, were significant predictors of clinical severity on admission and functional outcome at 3 months. Plasma NF-L is a promising biomarker of functional outcome after ischemic stroke.
Methylglyoxal (MG) is quantitatively the most important precursor to advanced glycation end-products (AGEs), and evidence is accumulating that it is also a causally linked to diabetes and aging related diseases. Living systems primarily reside on the glyoxalase system to detoxify MG into benign D-lactate. The flux to either glycation or detoxification, accordingly, is a key parameter for how well a system handles the ubiquitous glyoxal burden. Furthermore, insight into proteins and in particular their individual modification sites are central to understanding the involvement of MG and AGE in diabetes and aging related diseases. Here, we present a simple method to simultaneously monitor the flux of MG both to D-lactate and to protein AGE formation in a biological sample by employing an alkyne-labeled methylglyoxal probe. We apply the method to blood and plasma to demonstrate the impact of blood cell glyoxalase activity on plasma protein AGE formation. We move on to isolate proteins modified by the MG probe and accordingly can present the first general inventory of more than 100 proteins and 300 binding sites of the methylglyoxal probe on plasma as well as erythrocytic proteins. Some of the data could be validated against a number of in vivo and in vitro targets for advanced glycation previously known from the literature; the majority of proteins and specific sites however were previously unknown and may guide future research into MG and AGE to elucidate how these are functionally linked to diabetic disease and aging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.