Renal replacement therapy by peritoneal dialysis is frequently complicated by technical failure. Peritoneal dialysis fluids (PDF) cause injury to the peritoneal mesothelial cell layer due to their cytotoxicity. As only isolated elements of the involved cellular processes have been studied before, we aimed at a global assessment of the mesothelial stress response to PDF. Following single or repeated exposure to PDF or control medium, proteomics and bioinformatics techniques were combined to study effects in mesothelial cells (MeT-5A). Protein expression was assessed by two-dimensional gel electrophoresis, and significantly altered spots were identified by MALDI-TOF MS and MS2 techniques. The lists of experimentally derived candidate proteins were expanded by a next neighbor approach and analyzed for significantly enriched biological processes. To address the problem of an unknown portion of false positive spots in 2DGE, only proteins showing significant p-values on both levels were further interpreted. Single PDF exposure resulted in reduction of biological processes in favor of reparative responses, including protein metabolism, modification and folding, with chaperones as a major subgroup. The observed biological processes triggered by this acute PDF exposure mainly contained functionally interwoven multitasking proteins contributing as well to cytoskeletal reorganization and defense mechanisms. Repeated PDF exposure resulted in attenuated protein regulation, reflecting inhibition of stress responses by high levels of preinduced chaperones. The identified proteins were less attributable to acute cellular injury but rather to specialized functions with a reduced number of involved multitasking proteins. This finding agrees well with the concept of conditioning effects and cytoprotection. In conclusion, this study describes the reprogrammed proteome of mesothelial cells during recovery from PDF exposure and adaption to repetitive stress. A broad stress response with a number of highly overlapping processes and multitasking proteins shifts toward a more specific response of only few less overlapping processes.
Brain metastases (BM) are the most common brain tumors of adults and are associated with fatal prognosis. Formation of new blood vessels, named angiogenesis, was proposed to be the main hallmark of the growth of BM. Previous preclinical evidence revealed that angiogenic blockage might be considered for treatment; however, there were varying responses. In this study, we aimed to characterize the expression pattern of angiogenesis-related genes in BM of lung cancer and melanoma, which might be of importance for the different responses against anti-angiogenic treatment. Fifteen snap-frozen tissues obtained from BM of non-small cell lung cancer (NSCLC), small-cell lung cancer (SCLC), and melanoma patients were analyzed for angiogenesis-related genes using a commercially available gene expression kit. Epilepsy tissue was used as control. Expression values were analyzed using hierarchical clustering investigating relative fold changes and mapping to Omicsnet protein interaction network. CXCL10, CEACAM1, PECAM1, KIT, COL4A2, COL1A1, and HSPG2 genes were more than 50-fold up-regulated in all diagnosis groups when compared to control, whereas genes such as ANGPT4, PDGFRB, and SERPINF1 were down-regulated only in SCLC and melanoma groups, respectively. Using hierarchical clustering, 12 out of 15 cases were allocated to the correct histological primary tumor type. We identified genes with consistent up-regulation in BM of lung cancer and melanoma and other genes with differential expression across BM of these tumor types. Our data may be of relevance for targeted therapy or prophylaxis of BM using anti-angiogenic agents.
Bioincompatibility of peritoneal dialysis fluids (PDF) limits their use in renal replacement therapy. PDF exposure harms mesothelial cells but induces heat shock proteins (HSP), which are essential for repair and cytoprotection. We searched for cellular pathways that impair the heat shock response in mesothelial cells after PDF-exposure. In a dose-response experiment, increasing PDF-exposure times resulted in rapidly increasing mesothelial cell damage but decreasing HSP expression, confirming impaired heat shock response. Using proteomics and bioinformatics, simultaneously activated apoptosis-related and inflammation-related pathways were identified as candidate mechanisms. Testing the role of sterile inflammation, addition of necrotic cell material to mesothelial cells increased, whereas addition of the interleukin-1 receptor (IL-1R) antagonist anakinra to PDF decreased release of inflammatory cytokines. Addition of anakinra during PDF exposure resulted in cytoprotection and increased chaperone expression. Thus, activation of the IL-1R plays a pivotal role in impairment of the heat shock response of mesothelial cells to PDF. Danger signals from injured cells lead to an elevated level of cytokine release associated with sterile inflammation, which reduces expression of HSP and other cytoprotective chaperones and exacerbates PDF damage. Blocking the IL-1R pathway might be useful in limiting damage during peritoneal dialysis.
Background: Autoantigens have been reported in a variety of tumors, providing insight into the interplay between malignancies and the immune response, and also giving rise to novel diagnostic and therapeutic concepts. Why certain tumor-associated proteins induce an immune response remains largely elusive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.