Stress-induced cardiomyopathy, triggered by acute catecholamine discharge, is a syndrome characterized by transient, apical ballooning linked to acute heart failure and ventricular arrhythmias. Rats receiving an acute isoproterenol (ISO) overdose (OV) suffer cardiac apex ischemia-reperfusion damage and arrhythmia, and then undergo cardiac remodeling and dysfunction. Nevertheless, the subcellular mechanisms underlying cardiac dysfunction after acute damage subsides are not thoroughly understood. To address this question, Wistar rats received a single ISO injection (67 mg/kg). We found in vivo moderate systolic and diastolic dysfunction at 2 wk post-ISO-OV; however, systolic dysfunction recovered after 4 wk, while diastolic dysfunction worsened. At 2 wk post-ISO-OV, cardiac function was assessed ex vivo, while mitochondrial oxidative metabolism and stress were assessed in vitro, and Ca(2+) handling in ventricular myocytes. These were complemented with sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA), phospholamban (PLB), and RyR2 expression studies. Ex vivo, basal mechanical performance index (MPI) and oxygen consumption rate (MVO2) were unchanged. Nevertheless, upon increase of metabolic demand, by β-adrenergic stimulation (1-100 nM ISO), the MPI versus MVO2 relation decreased and shifted to the right, suggesting MPI and mitochondrial energy production uncoupling. Mitochondria showed decreased oxidative metabolism, membrane fragility, and enhanced oxidative stress. Myocytes presented systolic and diastolic Ca(2+) mishandling, and blunted response to ISO (100 nM), and all these without apparent changes in SERCA, PLB, or RyR2 expression. We suggest that post-ISO-OV mitochondrial dysfunction may underlie decreased cardiac contractility, mainly by depletion of ATP needed for myofilaments and Ca(2+) transport by SERCA, while exacerbated oxidative stress may enhance diastolic RyR2 activity.
Proinflammatory cytokines and the novel myokine irisin, a cleavage product of FNDC5, have been found to play a role in obesity and type 2 diabetes mellitus (T2DM). Irisin has been shown to increase browning of adipose tissue, thermogenesis, energy expenditure, and insulin sensitivity, yet its association with inflammatory markers is still limited. Circulating irisin has been found to be increased in obesity, while in adult subjects with T2DM decreased levels have been found. However, data establishing the association of circulating irisin in children and adolescents with T2DM has not been described in the literature. The objective of this study was to determine irisin plasma concentration and its association with metabolic and adiposity markers and with hs-CRP, a surrogate marker of inflammation used in clinical practice, in a pediatric population with T2DM. A cross-sample of 40 Mexican children and adolescents aged 7-17 were recruited, 20 diagnosed with T2DM and 20 healthy controls. Plasma irisin levels were found to be lower in the T2DM group compared with controls, which could be attributed to a reduced PGC-1α activity in muscle tissue with a consequent decrease in FNDC5 and irisin expression. Irisin concentration was found to be positively correlated with HDL-c, LDL-c, and total cholesterol, while negatively correlated with BMI, waist circumference, and triglycerides. However, after multiple regression analysis, only HDL-c correlation remained significant. hs-CRP was higher in the T2DM group and positively associated with adiposity markers, unfavorable lipid profile, insulin levels, and HOMA-IR, but no association with irisin was found. Given the favorable metabolic effects attributed to irisin, the low plasma levels found in children and adolescents with T2DM could exacerbate the inflammatory and metabolic imbalances and the intrinsic cardiovascular risk of this disease. We propose an “irisin-proinflammatory/anti-inflammatory axis” to explain the role of irisin as a metabolic regulator in obesity and T2DM.
The effective delivery of antioxidants to the cells is hindered by their high metabolization rate. In this work, quercetin was encapsulated in poly(lactic-co-glycolic) acid (PLGA) nanoparticles. They were characterized in terms of its physicochemical properties (particle size distribution, ζ-potential, encapsulation efficiency, quercetin release and biological interactions with cardiac cells regarding nanoparticle association, and internalization and protective capability against relevant challenges). A better delivery of quercetin was achieved when encapsulated versus free. When the cells were challenged with antimycin A, it resulted in lower mitochondrial O2- (4.65- vs. 5.69- fold) and H2O2 rate production (1.15- vs. 1.73- fold). Similarly, under hypoxia-reoxygenation injury, a better maintenance of cell viability was found (77 vs. 65%), as well as a reduction of thiol groups (~70 vs. 40%). Therefore, the delivery of encapsulated quercetin resulted in the preservation of mitochondrial function and ATP synthesis due to its improved oxidative stress suppression. The results point to the potential of this strategy for the treatment of oxidative stress-based cardiac diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.