According to the difficulty of marker based motion reconstruction of human torso movements a reduced kinematic formulation of the human spine is introduced, which describes the movement of the first thoracic vertebra in relation to the pelvis. The formulation is for implementation in a multibody model of the human body. As a result the formulation offers convenience in marker based motion capture and motion reconstruction via an optimization based kinematic approach and provides humanlike motion characteristics of torso motion.
This paper illustrates a kinematic study of human torso motion in order to design and transfer human-like motion on humanoid robots. The realization is done using motion capture data and an optimization based inverse kinematic approach for mapping motion data to skeleton models with the main focus on reproducing realistic torso motion. The kinematic model is based on a multiybody approach using relative coordinates. According to the difficulty of marker based motion reconstruction of human torso movements a detailed multibody model of the spine with a coupling structure between vertebrae based on medical data is introduced. Then, a new formulation describing the kinematic constraints between pelvis and shoulder girdle is presented in order to simplify modeling effort while maintaining natural motion of the torso. Results are compared for key movements with common models. The developed models will be used for design application in the Collaborative Research Center 588 “Humanoid Robots - Learning and Cooperating Multimodal Robots”.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.