During Switzerland's first wave of COVID-19, clinical pharmacy activities during medical rounds in Geneva University Hospitals were replaced by targeted remote interventions. We describe using the electronic PharmaCheck system to screen high-risk situations of adverse drug events (ADEs), particularly targeting prescriptions of lopinavir/ritonavir (LPVr) and hydroxychloroquine (HCQ) in the presence of contraindications or prescriptions outside institutional guidelines. Of 416 patients receiving LPVr and/or HCQ, 182 alerts were triggered for 164 (39.4%) patients. The main associated risk factors of ADEs were drug-drug interactions, QTc interval prolongation, electrolyte disorder and inadequate LPVr dosage. Therapeutic optimisation recommended by a pharmacist or proposals for additional monitoring were accepted in 80% (n=36) of cases. Combined with pharmacist contextualisation to the clinical context, PharmaCheck made it possible to successfully adapt clinical pharmacist activities by switching from a global to a targeted analysis mode in an emergency context.
Background Adverse drug events (ADEs) can be prevented by deploying clinical decision support systems (CDSS) that directly assist physicians, via computerized order entry systems, and clinical pharmacists performing medication reviews as part of medical rounds. However, physicians using CDSS are known to be exposed to the alert-fatigue phenomenon. Our study aimed to assess the performance of PharmaCheck—a CDSS to help clinical pharmacists detect high-risk situations with the potential to lead to ADEs—and its impact on clinical pharmacists’ activities. Methods Twenty clinical rules, divided into four risk classes, were set for the daily screening of high-risk situations in the electronic health records of patients admitted to our General Internal Medicine Department. Alerts to clinical pharmacists encouraged them to telephone prescribers and suggest any necessary treatment adjustments. PharmaCheck’s performance was assessed using the intervention’s positive predictive value (PPV), which characterizes the proportion of interventions for each alert triggered. PharmaCheck’s impact was assessed by considering clinical pharmacists as a filter for ruling out futile alerts and by comparing the final clinical PPV with a pharmacist (the proportion of interventions that led to a change in the medical regimen) to the final clinical PPV without a pharmacist. Results Over 132 days, 447 alerts were triggered for 383 patients, leading to 90 interventions (overall intervention PPV = 20.1%). By risk class, intervention PPVs made up 26.9% (n = 65/242) of abnormal laboratory value alerts, 3.1% (4/127) of alerts for contraindicated medications or medications to be used with caution, 28.2% (20/71) of drug–drug interaction alerts, and 14.3% (1/7) of inadequate mode of administration alerts. Clinical PPVs reached 71.0% (64/90) when pharmacists filtered alerts and 14% (64/242) if they were not doing it. Conclusion PharmaCheck enabled clinical pharmacists to improve their traditional processes and broaden their coverage by focusing on 20 high-risk situations. Alert management by pharmacists seemed to be a more effective way of preventing risky situations and alert-fatigue than a model addressing alerts to physicians exclusively. Some fine-tuning could enhance PharmaCheck's performance by considering the information quality of triggers, the variability of clinical settings, and the fact that some prescription processes are already highly secured.
Background Clinical decision support systems (CDSS) can help identify drug-related problems (DRPs). However, the alert specificity remains variable. Defining more relevant alerts for detecting DRPs would improve CDSS. Aim Develop electronic queries that assist pharmacists in conducting medication reviews and an assessment of the performance of this model to detect DRPs. Method Electronic queries were set up in CDSS using “triggers” from electronic health records: drug prescriptions, laboratory values, medical problems, vital signs, demographics. They were based on a previous study where 315 patients admitted in internal medicine benefited from a multidisciplinary medication review (gold-standard) to highlight potential DRPs. Electronic queries were retrospectively tested to assess performance in detecting DRPs revealed with gold-standard. For each electronic query, sensitivity, specificity, positive and negative predictive value were computed. Results Of 909 DRPs, 700 (77.8%) were used to create 366 electronic queries. Electronic queries correctly detected 77.1% of DRPs, median sensitivity and specificity reached 100.0% (IQRs, 100.0%–100.0%) and 99.7% (IQRs, 97.0%–100.0%); median positive predictive value and negative predictive value reached 50.0% (IQRs, 12.5%–100.0%) and 100.0% (IQRs, 100.0%–100.0%). Performances varied according to “triggers” (p < 0.001, best performance in terms of predictive positive value when exclusively involving drug prescriptions). Conclusion Electronic queries based on electronic heath records had high sensitivity and negative predictive value and acceptable specificity and positive predictive value and may contribute to facilitate medication review. Implementing some of these electronic queries (the most effective and clinically relevant) in current practice will allow a better assessment of their impact on the efficiency of the clinical pharmacist.
Background: Adverse drug events (ADEs) can be prevented by deploying clinical decision support systems (CDSS) that directly assist physicians, via computerized order entry systems, and clinical pharmacists performing medication reviews as part of medical rounds. However, physicians using CDSS are known to be exposed to the alert-fatigue phenomenon. Our study aimed to assess the performance of PharmaCheck—a CDSS to help clinical pharmacists detect high-risk situations with the potential to lead to ADEs—and its impact on clinical pharmacists’ activities.Methods: Twenty clinical rules, divided into four risk classes, were set for the daily screening of high-risk situations in the electronic health records of patients admitted to our General Internal Medicine Department. Alerts to clinical pharmacists encouraged them to telephone prescribers and suggest any necessary treatment adjustments. PharmaCheck’s performance was assessed using the intervention’s positive predictive value (PPV), which characterizes the proportion of interventions for each alert triggered. PharmaCheck’s impact was assessed by considering clinical pharmacists as a filter for ruling out futile alerts and by comparing the final clinical PPV with a pharmacist (the proportion of interventions that led to a change in the medical regimen) to the final clinical PPV without a pharmacist.Results: Over 132 days, 447 alerts were triggered for 383 patients, leading to 90 interventions (overall intervention PPV = 20.1%). By risk class, intervention PPVs made up 26.9% (n = 65/242) of abnormal laboratory value alerts, 3.1% (4/127) of alerts for contraindicated medications or medications to be used with caution, 28.2% (20/71) of drug–drug interaction alerts, and 14.3% (1/7) of inadequate mode of administration alerts. Clinical PPVs reached 71.0% (64/90) when pharmacists filtered alerts and 14% (64/242) if they were not doing it.Conclusion: PharmaCheck enabled clinical pharmacists to improve their traditional processes and broaden their coverage by focusing on 20 high-risk situations. Alert management by pharmacists seemed to be a more effective way of preventing risky situations and alert fatigue than a model addressing alerts to physicians exclusively. Some fine-tuning could enhance PharmaCheck's performance by considering the information quality of triggers, the variability of clinical settings, and the fact that some prescription processes are already highly secured.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.