Effects of plant traits on herbivore-carnivore interactions are well documented in component communities but are not well understood at the level of large, complex communities. We report on a 2-year field experiment testing mechanisms by which variation in food quality among eight temperate forest tree species alters avian suppression of an assemblage of dietary generalist caterpillars. Plant quality and bird effects varied dramatically among tree species; high-quality plants yielded herbivores of 50% greater mass than those on low-quality plants, and bird effects ranged from near 0% to 97% reductions in caterpillar density. We also find evidence for two mechanisms linking host plant quality to bird effects. If caterpillar density was statistically controlled for, birds had relatively strong effects on the herbivores of low-quality plants, as predicted by the slow-growth/high-mortality hypothesis. At the same time, caterpillar density increased with plant quality, and bird effects were density dependent. Consequently, the net effect of birds was strongest on the herbivores of high-quality plants, a dynamic we call the high-performance/high-mortality hypothesis. Host plant quality thus changes highly generalized herbivore-carnivore interactions by two complementary but opposing mechanisms. These results highlight the interrelatedness of plant-herbivore and herbivore-carnivore interactions and thus the importance of a tritrophic perspective.
Restoration of ecological communities that can withstand future climate and land use changes requires information on species responses to various natural disturbances. Frost is an important disturbance that regulates plant species distributions, and although rare in tropical rainforest, it can occur in upland areas, especially where deforestation has occurred. We report the impacts of a severe frost that occurred in June and July 2007 on the Atherton Tablelands, Queensland, Australia and caused extensive damage to riparian restoration plots of upland rainforest species. We estimated proportion foliage retention to (1) compare impacts across 45 species; (2) examine the influence of plant height on frost effects; and (3) determine if plantings under shelterbelts of mature trees received less damage. Species exhibited different levels of foliage retention. Species that were particularly frost resistant included those from riparian habitats and a conifer. Some heavily impacted species are deciduous and may survive frost by shedding leaves; this warrants further investigation. Plant canopy height above ground level was only weakly correlated to foliage retention. Sheltered plants were much less damaged than unsheltered conspecifics, suggesting a useful way to mitigate frost impacts. These principles should help guide the development of resilient ecological communities in frost-prone areas.
Translating human induced pluripotent stem cell (hiPSC)–derived cells and tissues into the clinic requires streamlined and reliable production of clinical‐grade hiPSCs. This article describes an entirely animal component–free procedure for the reliable derivation of stable hiPSC lines from donor peripheral blood mononuclear cells (PBMCs) using only autologous patient materials and xeno‐free reagents. PBMCs are isolated from a whole blood donation, from which a small amount of patient serum is also generated. The PBMCs are then expanded prior to reprogramming in an animal component–free erythroblast growth medium supplemented with autologous patient serum, thereby eliminating the need for animal serum. After expansion, the erythroblasts are reprogrammed using either cGMP‐grade Sendai viral particles (CytoTune™ 2.1 kit) or episomally replicating reprogramming plasmids (Epi5™ kit), both commercially available. Expansion of emerging hiPSCs on a recombinant cGMP‐grade human laminin substrate is compatible with a number of xeno‐free or chemically defined media (some available as cGMP‐grade reagents), such as E8, Nutristem, Stemfit, or mTeSR Plus. hiPSC lines derived using this method display expression of expected surface markers and transcription factors, loss of the reprogramming agent–derived nucleic acids, genetic stability, and the ability to robustly differentiate in vitro to multiple lineages. © 2020 by John Wiley & Sons, Inc. Basic Protocol 1: Isolating peripheral blood mononuclear cells using CPT tubes Support Protocol 1: Removal of clotting factors to produce serum from autologous plasma collected in Basic Protocol 1 Basic Protocol 2: PBMC expansion in an animal‐free erythroblast expansion medium containing autologous serum Basic Protocol 3: Reprogramming of expanded PBMCs with Sendai viral reprogramming particles Alternate Protocol: Reprogramming of expanded PBMCs with episomal plasmids Basic Protocol 4: Picking, expanding, and cryopreserving hiPSC clones Support Protocol 2: Testing Sendai virus kit–reprogrammed hiPSC for absence of Sendai viral RNA Support Protocol 3: Testing Epi5 kit–reprogrammed hiPSC for absence of episomal plasmid DNA Support Protocol 4: Assessing the undifferentiated state of human pluripotent stem cell cultures by multi‐color immunofluorescent staining and confocal imaging Support Protocol 5: Coating plates with extracellular matrices to support hiPSC attachment and expansion
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.