The Transition Effect Ring Oscillator (TERO) is a popular design for building entropy sources because it is compact, built from digital elements only and is very well suited for FPGAs. However, it is known to be very sensitive to process variation. While the latter is useful for building Physical Unclonable Functions, it is interfering with the application as entropy source.
In this paper, we investigate an approach to increase reliability. We show that adding a third stage eliminates much of the susceptibility to process variation and how a resulting GHz oscillation can be evaluated on an FPGA. The design is supported by physical and stochastic modeling. The physical model is validated using an experiment with dynamically reconfigurable LUTs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.