In this article, we present a novel approach for parsing argumentation structures. We identify argument components using sequence labeling at the token level and apply a new joint model for detecting argumentation structures. The proposed model globally optimizes argument component types and argumentative relations using integer linear programming. We show that our model considerably improves the performance of base classifiers and significantly outperforms challenging heuristic baselines. Moreover, we introduce a novel corpus of persuasive essays annotated with argumentation structures. We show that our annotation scheme and annotation guidelines successfully guide human annotators to substantial agreement. This corpus and the annotation guidelines are freely available for ensuring reproducibility and to encourage future research in computational argumentation.
In this paper, we present a novel approach for identifying argumentative discourse structures in persuasive essays. The structure of argumentation consists of several components (i.e. claims and premises) that are connected with argumentative relations. We consider this task in two consecutive steps. First, we identify the components of arguments using multiclass classification. Second, we classify a pair of argument components as either support or non-support for identifying the structure of argumentative discourse. For both tasks, we evaluate several classifiers and propose novel feature sets including structural, lexical, syntactic and contextual features. In our experiments, we obtain a macro F1-score of 0.726 for identifying argument components and 0.722 for argumentative relations.
Argument mining is a core technology for automating argument search in large document collections. Despite its usefulness for this task, most current approaches to argument mining are designed for use only with specific text types and fall short when applied to heterogeneous texts. In this paper, we propose a new sentential annotation scheme that is reliably applicable by crowd workers to arbitrary Web texts. We source annotations for over 25,000 instances covering eight controversial topics. The results of cross-topic experiments show that our attention-based neural network generalizes best to unseen topics and outperforms vanilla BiLSTM models by 6% in accuracy and 11% in F-score.
We experiment with two recent contextualized word embedding methods (ELMo and BERT) in the context of open-domain argument search. For the first time, we show how to leverage the power of contextualized word embeddings to classify and cluster topic-dependent arguments, achieving impressive results on both tasks and across multiple datasets. For argument classification, we improve the state-of-the-art for the UKP Sentential Argument Mining Corpus by 20.8 percentage points and for the IBM Debater -Evidence Sentences dataset by 7.4 percentage points. For the understudied task of argument clustering, we propose a pre-training step which improves by 7.8 percentage points over strong baselines on a novel dataset, and by 12.3 percentage points for the Argument Facet Similarity (AFS) Corpus. 1 Contextualized word embeddings, especially ELMo (Peters et al., 2018) and BERT (Devlin et al., 2018) could offer a viable solution to this problem. In contrast to traditional word embeddings like word2vec (Mikolov et al., 2013) or
Automated fact-checking based on machine learning is a promising approach to identify false information distributed on the web. In order to achieve satisfactory performance, machine learning methods require a large corpus with reliable annotations for the different tasks in the fact-checking process. Having analyzed existing fact-checking corpora, we found that none of them meets these criteria in full. They are either too small in size, do not provide detailed annotations, or are limited to a single domain. Motivated by this gap, we present a new substantially sized mixed-domain corpus with annotations of good quality for the core fact-checking tasks: document retrieval, evidence extraction, stance detection, and claim validation. To aid future corpus construction, we describe our methodology for corpus creation and annotation, and demonstrate that it results in substantial inter-annotator agreement. As baselines for future research, we perform experiments on our corpus with a number of model architectures that reach high performance in similar problem settings. Finally, to support the development of future models, we provide a detailed error analysis for each of the tasks. Our results show that the realistic, multi-domain setting defined by our data poses new challenges for the existing models, providing opportunities for considerable improvement by future systems. 12 underlined words in the resolution are hyperlinks 13 https://www.mturk.com/
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.