Tandem affinity strategies reach exceptional protein purification grades and have considerably improved the outcome of mass spectrometry-based proteomic experiments. However, current tandem affinity tags are incompatible with two-step purification under fully denaturing conditions. Such stringent purification conditions are desirable for mass spectrometric analyses of protein modifications as they result in maximal preservation of posttranslational modifications. Here we describe the histidine-biotin (HB) tag, a new tandem affinity tag for twostep purification under denaturing conditions. The HB tag consists of a hexahistidine tag and a bacterially derived in vivo biotinylation signal peptide that induces efficient biotin attachment to the HB tag in yeast and mammalian cells. HB-tagged proteins can be sequentially purified under fully denaturing conditions, such as 8 M urea, by Ni 2؉ chelate chromatography and binding to streptavidin resins. The stringent separation conditions compatible with the HB tag prevent loss of protein modifications, and the high purification grade achieved by the tandem affinity strategy facilitates mass spectrometric analysis of posttranslational modifications. Ubiquitination is a particularly sensitive protein modification that is rapidly lost during purification under native conditions due to ubiquitin hydrolase activity. The HB tag is ideal to study ubiquitination because the denaturing conditions inhibit hydrolase activity, and the tandem affinity strategy greatly reduces nonspecific background. We tested the HB tag in proteome-wide ubiquitin profiling experiments in yeast and identified a number of known ubiquitinated proteins as well as so far unidentified candidate ubiquitination targets. In addition, the stringent purification conditions compatible with the HB tag allow effective mass spectrometric identification of in vivo cross-linked protein com- Mass spectrometric analysis of proteins has tremendously contributed to our understanding of biological systems. Mapping of covalent protein modifications by mass spectrometric approaches has made it possible to identify and rapidly evaluate the biological significance of modifications. In addition, identification of protein complexes by mass spectrometry has allowed investigators to connect cellular pathways and to describe the dynamics of protein complexes (1, 2). These approaches typically require a high degree of purification of proteins or protein complexes. Importantly to get a genuine picture of the in vivo situation it is essential to avoid any changes in protein modification or protein complex composition that might occur during the purification procedure. Two-step purification strategies have been proven to be very effective in reducing nonspecific background, which is particularly important for the analyses of complex protein samples (3). The first widely and successfully used tandem affinity tag was the TAP 1 tag, which consists of the immunoglobulin-interacting domain of Protein A and a calmodulinbinding peptide (CBP) a...
We developed an integrated proteomic approach to decipher in vivo protein-protein interactions and applied this strategy to globally map the 26 S proteasome interaction network in yeast. We termed this approach QTAX for quantitative analysis of tandem affinity purified in vivo cross-linked (X) protein complexes. For this work, in vivo formaldehyde cross-linking was used to freeze both stable and transient interactions occurring in intact cells prior to lysis. To isolate cross-linked protein complexes with high purification efficiency under fully denaturing conditions, a new tandem affinity tag consisting of a hexahistidine sequence and an in vivo biotinylation signal was adopted for affinity-based purification. Tandem affinity purification after in vivo cross-linking was combined with tandem mass spectrometry coupled with a quantitative SILAC (stable isotope labeling of amino acids in cell culture) strategy to carry out unambiguous protein identification and quantification of specific protein interactions.
Cloning of whole genomes of the genus Mycoplasma in yeast has been an essential step for the creation of the first synthetic cell. The genome of the synthetic cell is based on Mycoplasma mycoides, which deviates from the universal genetic code by encoding tryptophan rather than the UGA stop codon. The feature was thought to be important because bacterial genes might be toxic to the host yeast cell if driven by a cryptic promoter active in yeast. As we move to expand the range of bacterial genomes cloned in yeast, we extended this technology to bacteria that use the universal genetic code. Here we report cloning of the Acholeplasma laidlawii PG-8A genome, which uses the universal genetic code. We discovered that only one A. laidlawii gene, a surface anchored extracellular endonuclease, was toxic when cloned in yeast. This gene was inactivated in order to clone and stably maintain the A. laidlawii genome as a centromeric plasmid in the yeast cell.
BackgroundSynthetic genomic approaches offer unique opportunities to use powerful yeast and Escherichia coli genetic systems to assemble and modify chromosome-sized molecules before returning the modified DNA to the target host. For example, the entire 1 Mb Mycoplasma mycoides chromosome can be stably maintained and manipulated in yeast before being transplanted back into recipient cells. We have previously demonstrated that cloning in yeast of large (> ~ 150 kb), high G + C (55%) prokaryotic DNA fragments was improved by addition of yeast replication origins every ~100 kb. Conversely, low G + C DNA is stable (up to at least 1.8 Mb) without adding supplemental yeast origins. It has not been previously tested whether addition of yeast replication origins similarly improves the yeast-based cloning of large (>150 kb) eukaryotic DNA with moderate G + C content. The model diatom Phaeodactylum tricornutum has an average G + C content of 48% and a 27.4 Mb genome sequence that has been assembled into chromosome-sized scaffolds making it an ideal test case for assembly and maintenance of eukaryotic chromosomes in yeast.ResultsWe present a modified chromosome assembly technique in which eukaryotic chromosomes as large as ~500 kb can be assembled from cloned ~100 kb fragments. We used this technique to clone fragments spanning P. tricornutum chromosomes 25 and 26 and to assemble these fragments into single, chromosome-sized molecules. We found that addition of yeast replication origins improved the cloning, assembly, and maintenance of the large chromosomes in yeast. Furthermore, purification of the fragments to be assembled by electroelution greatly increased assembly efficiency.ConclusionsEntire eukaryotic chromosomes can be successfully cloned, maintained, and manipulated in yeast. These results highlight the improvement in assembly and maintenance afforded by including yeast replication origins in eukaryotic DNA with moderate G + C content (48%). They also highlight the increased efficiency of assembly that can be achieved by purifying fragments before assembly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.