We present a theoretical study on narrow armchair graphene nanoribbons (AGNRs) with hydroxyl functionalized edges. Although this kind of passivation strongly affects the structure of the ribbon, a high degree of edge functionalization proves to be particularly stable. An important consequence of the geometric deviations is a severe reduction of the band-gap of the investigated 7-AGNR. This shift follows a linear dependence on the number of added hydroxyl groups per unit cell and thus offers the prospect of a tunable band-gap by edge functionalization. We furthermore cover the behavior of characteristic phonons for the ribbon itself as well as fingerprint modes of the hydroxyl groups. A large down-shift of prominent Raman active modes allows the experimental determination of the degree of edge functionalization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.