Sperm are equipped with a unique set of ion channels that orchestrate fertilization. In mouse sperm, the principal K+ current (IKSper) is carried by the Slo3 channel, which sets the membrane potential (Vm) in a strongly pHi-dependent manner. Here, we show that IKSper in human sperm is activated weakly by pHi and more strongly by Ca2+. Correspondingly, Vm is strongly regulated by Ca2+ and less so by pHi. We find that inhibitors of Slo3 suppress human IKSper, and we identify the Slo3 protein in the flagellum of human sperm. Moreover, heterologously expressed human Slo3, but not mouse Slo3, is activated by Ca2+ rather than by alkaline pHi; current–voltage relations of human Slo3 and human IKSper are similar. We conclude that Slo3 represents the principal K+ channel in human sperm that carries the Ca2+-activated IKSper current. We propose that, in human sperm, the progesterone-evoked Ca2+ influx carried by voltage-gated CatSper channels is limited by Ca2+-controlled hyperpolarization via Slo3.DOI: http://dx.doi.org/10.7554/eLife.01438.001
Sperm guidance is controlled by chemical and physical cues. In many species, Ca(2+) bursts in the flagellum govern navigation to the egg. In Arbacia punctulata, a model system of sperm chemotaxis, a cGMP signaling pathway controls these Ca(2+) bursts. The underlying Ca(2+) channel and its mechanisms of activation are unknown. Here, we identify CatSper Ca(2+) channels in the flagellum of A. punctulata sperm. We show that CatSper mediates the chemoattractant-evoked Ca(2+) influx and controls chemotactic steering; a concomitant alkalization serves as a highly cooperative mechanism that enables CatSper to transduce periodic voltage changes into Ca(2+) bursts. Our results reveal intriguing phylogenetic commonalities but also variations between marine invertebrates and mammals regarding the function and control of CatSper. The variations probably reflect functional and mechanistic adaptations that evolved during the transition from external to internal fertilization.
BackgroundThe maintenance of internal pH in bacterial cells is challenged by natural stress conditions, during host infection or in biotechnological production processes. Comprehensive transcriptomic and proteomic analyses has been conducted in several bacterial model systems, yet questions remain as to the mechanisms of pH homeostasis.ResultsHere we present the comprehensive analysis of pH homeostasis in C. glutamicum, a bacterium of industrial importance. At pH values between 6 and 9 effective maintenance of the internal pH at 7.5 ± 0.5 pH units was found. By DNA microarray analyses differential mRNA patterns were identified. The expression profiles were validated and extended by 1D-LC-ESI-MS/MS based quantification of soluble and membrane proteins. Regulators involved were identified and thereby participation of numerous signaling modules in pH response was found. The functional analysis revealed for the first time the occurrence of oxidative stress in C. glutamicum cells at neutral and low pH conditions accompanied by activation of the iron starvation response. Intracellular metabolite pool analysis unraveled inhibition of the TCA and other pathways at low pH. Methionine and cysteine synthesis were found to be activated via the McbR regulator, cysteine accumulation was observed and addition of cysteine was shown to be toxic under acidic conditions.ConclusionsNovel limitations for C. glutamicum at non-optimal pH values were identified by a comprehensive analysis on the level of the transcriptome, proteome, and metabolome indicating a functional link between pH acclimatization, oxidative stress, iron homeostasis, and metabolic alterations. The results offer new insights into bacterial stress physiology and new starting points for bacterial strain design or pathogen defense.
The sea urchin sperm guanylyl cyclase chemoreceptor achieves ultrasensitive signal detection and precise signal modulation through high receptor density, subnanomolar ligand affinity, and sequential dephosphorylation.
Corynebacterium glutamicum is known for its effective excretion of amino acids under particular metabolic conditions. Concomitant activities of uptake and excretion systems would create an energy-wasting futile cycle; amino acid export systems are therefore tightly regulated. We have used a DNA microarray approach to identify genes for membrane proteins which are overexpressed under conditions of elevated cytoplasmic concentrations of methionine. One of these genes was brnF, coding for the larger subunit of BrnFE, a previously identified two-component isoleucine export system. By deletion, complementation, and overexpression of the brnFE genes in a C. glutamicum strain, in which the two uptake systems for methionine were inactivated, we identified BrnFE as being responsible for methionine export. In the presence of both substrates in the cytoplasm, BrnFE was found to transport isoleucine and methionine at similar rates. The expression of the brnFE gene cluster depends on an Lrp-type transcription factor and was shown to be strongly induced by increasing cytoplasmic methionine concentration. Methionine was a better inducer than isoleucine, indicating that methionine rather than isoleucine might be the native substrate of BrnFE. When the synthesis of BrnFE was blocked by chloramphenicol, fast methionine export was still observed, but only at greatly increased cytoplasmic levels of this amino acid. This indicates the presence of at least one other methionine export system, presumably with low affinity but high capacity. Under conditions where cytoplasmic methionine does not exceed a concentration of 50 mM, BrnFE is the dominant export system for this amino acid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.