High requirements for duration and quality of laser welding are the main topics in the line production nowadays, especially in the automotive industry. With acquisition rates up to 100 kHz and microseconds duration capture times, optical coherence tomography (OCT) is a powerful adaptive tool, with a few microns resolution, for real‐time direct non‐contact investigation of material processing. The measurement system used to acquire the workpiece topography enables high accuracy automatic seam tracking, process monitoring and quality assurance (QA), and these functions are executed simultaneously.
Automatisierte, robotergeführte Laserstrahlschweißanlagen mit Multikilowatt‐Festkörperlasern stellen erhöhte Anforderungen an den Laserschutz. Nicht selten führt dies zu Laserstrahlschutzkabinen, die den Menschen vollständig vom Fertigungsprozess abschirmen. Kamerasysteme mit Fremdbeleuchtung zeigen ein Live‐Bild des Schweißprozesses sowie dessen Umgebung und bringen so den Benutzer mit dem Auge zurück an Schweißnaht, wie es beim manuellen Schweißen der Fall ist. Intelligente Steuerungs‐, Kamera‐ und Beleuchtungstechnik erlaubt zudem eine automatische Überwachung des Prozesses. Neben den Bilddaten werden zusätzlich Prozessparameter der Anlage synchron aufgezeichnet und ausgewertet. Somit stehen dem Benutzer bei der Analyse von n.i.O.‐Meldungen, Fehlstellen und weiteren Problemen sowohl ein Video als auch die zum jeweiligen Zeitpunkt aktuellen Parameter zur Verfügung. Kamerasysteme dieser Art haben sich in automatisierten Serienanlagen bereits als wichtiges Werkzeug zur Steigerung der Produktivität etabliert und genießen durch die videobildbasierte Mensch‐Maschine‐Schnittstelle eine hohe Akzeptanz beim Benutzer.
This paper represents nondestructive quality monitoring technique using optical coherence tomography (OCT). It addresses online monitoring of weld depth during laser beam oscillation welding and aims at the application in joining cells in large battery assemblies. The weld depth was continuously detected with OCT while the OCT beam position was adjusted highly dynamically in accordance with the scanning optics position. By displacing the OCT measurement beam according to the current machining direction, the correlation between the position of the laser beam in an oscillating circular pattern along the circular feed direction and the periodic fluctuations of the measured weld depth was explored. It was found that the deepest part of the keyhole is located at the trailing position of the laser beam. This effect can be attributed to the large heat input due to the overlapping circular movements. The results confirm once again that instant weld depth monitoring with OCT ensures superior weld quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.