The mechanisms by which probiotic strains enhance the health of the host remain largely uncharacterized. Here we demonstrate that Lactobacillus salivarius UCC118, a recently sequenced and genetically tractable probiotic strain of human origin, produces a bacteriocin in vivo that can significantly protect mice against infection with the invasive foodborne pathogen Listeria monocytogenes. A stable mutant of Lb. salivarius UCC118 that is unable to produce the Abp118 bacteriocin also failed to protect mice against infection with two strains of L. monocytogenes, EGDe and LO28, confirming that bacteriocin production is the primary mediator of protection against this organism. Furthermore, Lb. salivarius UCC118 did not offer any protection when mice were infected with a strain of L. monocytogenes expressing the cognate Abp118 immunity protein AbpIM, confirming that the antimicrobial effect is a result of direct antagonism between Lb. salivarius and the pathogen, mediated by the bacteriocin Abp118.infection ͉ Listeria ͉ probiotic
Listeria monocytogenes is a human food-borne facultative intracellular pathogen that is resistant to a wide range of stress conditions. As a consequence, L. monocytogenes is extremely difficult to control along the entire food chain from production to storage and consumption. Frequent and recent outbreaks of L. monocytogenes infections illustrate that current measures of decontamination and preservation are suboptimal to control L. monocytogenes in food. In order to develop efficient measures to prevent contamination during processing and control growth during storage of food it is crucial to understand the mechanisms utilized by L. monocytogenes to tolerate the stress conditions in food matrices and food processing environments. Food-related stress conditions encountered by L. monocytogenes along the food chain are acidity, oxidative and osmotic stress, low or high temperatures, presence of bacteriocins and other preserving additives, and stresses as a consequence of applying alternative decontamination and preservation technologies such high hydrostatic pressure, pulsed and continuous UV light, pulsed electric fields (PEF). This review is aimed at providing a summary of the current knowledge on the response of L. monocytogenes toward these stresses and the mechanisms of stress resistance employed by this important food-borne bacterium. Circumstances when L. monocytogenes cells become more sensitive or more resistant are mentioned and existence of a cross-resistance when multiple stresses are present is pointed out.
SummaryThe Listeria monocytogenes Agr peptide-sensing system has been analysed by creating a deletion mutant in agrD, the structural gene for the putative quorum-sensing peptide. The DagrD mutant displayed significantly reduced biofilm formation, a defect which could be restored by genetic or physical complementation. A reduced invasion of Caco-2 intestinal epithelial cells was observed for the DagrD mutant while phagocytosis by THP-1 macrophages was unaffected. Additionally, the level of internalin A (InlA) in the cell wall was decreased in the DagrD mutant. Expression profiling of virulence genes (hlyA, actA, plcA, prfA and inlA) identified a finely tuned regulation which resulted in an impaired virulence response in the DagrD mutant. The mutant is also significantly attenuated for virulence in mice, as revealed by bioluminescent in vivo imaging. On day 3 post infection, systemic dissemination to livers and spleens had occurred for the wild type, whereas the DagrD mutant remained localized to the liver. Microarray analysis identified 126 and 670 genes as significantly regulated in exponential and stationary phase respectively. The results presented here suggest that peptide sensing plays an important role in the biology of L. monocytogenes, with relevant phenotypes in both the saprophytic and parasitic lifecycles.
Some strains of bifidobacteria are effective in inhibiting LPS-induced inflammation and thus might be appropriate candidates for probiotic intervention in chronic intestinal inflammation.
BackgroundBifidobacteria are commonly found as part of the microbiota of the gastrointestinal tract (GIT) of a broad range of hosts, where their presence is positively correlated with the host’s health status. In this study, we assessed the genomes of thirteen representatives of Bifidobacterium breve, which is not only a frequently encountered component of the (adult and infant) human gut microbiota, but can also be isolated from human milk and vagina.ResultsIn silico analysis of genome sequences from thirteen B. breve strains isolated from different environments (infant and adult faeces, human milk, human vagina) shows that the genetic variability of this species principally consists of hypothetical genes and mobile elements, but, interestingly, also genes correlated with the adaptation to host environment and gut colonization. These latter genes specify the biosynthetic machinery for sortase-dependent pili and exopolysaccharide production, as well as genes that provide protection against invasion of foreign DNA (i.e. CRISPR loci and restriction/modification systems), and genes that encode enzymes responsible for carbohydrate fermentation. Gene-trait matching analysis showed clear correlations between known metabolic capabilities and characterized genes, and it also allowed the identification of a gene cluster involved in the utilization of the alcohol-sugar sorbitol.ConclusionsGenome analysis of thirteen representatives of the B. breve species revealed that the deduced pan-genome exhibits an essentially close trend. For this reason our analyses suggest that this number of B. breve representatives is sufficient to fully describe the pan-genome of this species. Comparative genomics also facilitated the genetic explanation for differential carbon source utilization phenotypes previously observed in different strains of B. breve.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-15-170) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.