Background and Purpose: Von Willebrand factor (VWF) strings mediate spontaneous platelet adhesion in the vascular lumen, which may lead to microthrombi formation and contribute to stroke pathology. However, the mechanism of VWF string attachment at the endothelial surface is unknown. We tested the novel hypothesis that VWF strings are tethered to the endothelial surface through an interaction between extracellular vimentin and the A2 domain of VWF. We further explored the translational value of blocking this interaction in a model of ischemic stroke. Methods: Human endothelial cells (EC) and pressurized cerebral arteries were stimulated with histamine to elicit VWF string formation. Recombinant proteins and antibodies were employed to block VWF string formation. Mice underwent transient middle cerebral artery occlusion (MCAO) with reperfusion. Just prior to recanalization, mice were given either vehicle or A2 protein (recombinant VWF A2 domain) to disrupt the vimentin/VWF interaction. Laser speckle contrast imaging was used to monitor cortical perfusion. Results: Pressurized cerebral arteries produced VWF strings following histamine stimulation, which were reduced in arteries from vimentin knockout mice. VWF string formation was significantly reduced in EC incubated with A2 protein or anti-vimentin antibodies. Lastly, A2 protein treatment significantly improved cortical reperfusion following MCAO. Conclusions: We provide the first direct evidence of cerebral VWF strings and demonstrate that extracellular vimentin significantly contributes to VWF string formation via A2 domain binding. Lastly, we show that pharmacologically targeting the vimentin/VWF interaction through the A2 domain can promote improved reperfusion following ischemic stroke. Together, these studies demonstrate the critical role of VWF strings in stroke pathology and offer new therapeutic targets for treatment of ischemic stroke.
Though extracorporeal membrane oxygenation (ECMO) provides life-saving support, this intervention exposes patients to certain risks. Circulating free hemoglobin (fHb) resulting from mechanically induced hemolysis and insufficient haptoglobin/hemopexin may promote thrombosis within the ECMO circuit. Thrombi in the circuit can result in thromboembolic complications in these patients. Prevention of thrombus formation and propagation in the ECMO circuit may improve clinical outcome. fHb released during hemolysis has been shown to have multiple adverse effects, including thrombosis, but the mechanism by which fHb contributes to thrombosis in an ECMO circuit remains elusive. It is well established that (1) high shear stress generated in the circuit may cause hemolysis, and (2) plasma fibrinogen is adsorbed onto the inner tubing of the ECMO circuit over time. Plasma von Willebrand factor (pVWF) mediates platelet deposition at sites of vascular injury under high shear stress by sensing alterations in the hemodynamic environment. This biophysical property of pVWF that enables hemostasis may also contribute to the pathogenesis of ECMO-induced thrombosis. pVWF contains binding sites for both adsorbed fibrin(ogen) and fHb. High concentrations of fHb increase pVWF-mediated platelet adhesion and thrombus formation on a surface-adsorbed fibrin(ogen) under high shear stress. The molecular mechanism(s) by which fHb drives the conformation of pVWF into a prothrombotic state is currently unknown. Reduction of thrombotic risks during ECMO intervention warrants further investigations into the interaction between pVWF and fHb.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.