Reviewing 60 studies on natural gaze behavior in sports, it becomes clear that, over the last 40 years, the use of eye-tracking devices has considerably increased. Specifically, this review reveals the large variance of methods applied, analyses performed, and measures derived within the field. The results of sub-sample analyses suggest that sports-related eye-tracking research strives, on the one hand, for ecologically valid test settings (i.e., viewing conditions and response modes), while on the other, for experimental control along with high measurement accuracy (i.e., controlled test conditions with high-frequency eye-trackers linked to algorithmic analyses). To meet both demands, some promising compromises of methodological solutions have been proposed—in particular, the integration of robust mobile eye-trackers in motion-capture systems. However, as the fundamental trade-off between laboratory and field research cannot be solved by technological means, researchers need to carefully weigh the arguments for one or the other approach by accounting for the respective consequences. Nevertheless, for future research on dynamic gaze behavior in sports, further development of the current mobile eye-tracking methodology seems highly advisable to allow for the acquisition and algorithmic analyses of larger amounts of gaze-data and further, to increase the explanatory power of the derived results.
In the present study, we investigated whether peripheral vision can be used to monitor multiple moving objects and to detect single-target changes. For this purpose, in Experiment 1, a modified multiple object tracking (MOT) setup with a large projection screen and a constant-position centroid phase had to be checked first. Classical findings regarding the use of a virtual centroid to track multiple objects and the dependency of tracking accuracy on target speed could be successfully replicated. Thereafter, the main experimental variations regarding the manipulation of to-bedetected target changes could be introduced in Experiment 2. In addition to a button press used for the detection task, gaze behavior was assessed using an integrated eyetracking system. The analysis of saccadic reaction times in relation to the motor response showed that peripheral vision is naturally used to detect motion and form changes in MOT, because saccades to the target often occurred after target-change offset. Furthermore, for changes of comparable task difficulties, motion changes are detected better by peripheral vision than are form changes. These findings indicate that the capabilities of the visual system (e.g., visual acuity) affect change detection rates and that covert-attention processes may be affected by vision-related aspects such as spatial uncertainty. Moreover, we argue that a centroid-MOT strategy might reduce saccaderelated costs and that eyetracking seems to be generally valuable to test the predictions derived from theories of MOT.Finally, we propose implications for testing covert attention in applied settings.
Previous studies of multiple-object tracking have shown that gaze behavior is affected by target collisions and target-distractor crowding. Therefore, in order to experimentally disentangle this collision-crowding confound, we examined events of target collisions with the bordering frame and crowding with distractors. We hypothesized that collisions are particularly demanding for covert attentional processing, whereas crowding particularly challenges peripheral vision. Results show that gaze is located closer to targets when they are crowded, as would be expected to reduce negative crowding effects by utilizing the higher spatial acuity of foveal vision. However, saccades, which interrupt visual information processing, were instead initiated as a function of target collisions with the bordering frame. Consequently, in a dual-task condition that required the detection of target changes, participants more frequently missed changes if they occurred in time intervals around a collision. Based on these results, superior performance should be expected if foveal gaze is optimally anchored among crowded targets and if potential target changes are monitored with peripheral vision. In addition to the implications for further laboratory research of multiple-object tracking, these findings are relevant to a multitude tasks that require the monitoring of several targets and the simultaneous detection of certain events in the visual periphery, as it is commonly the case, for instance, in sports.
In the current study, dual-task performance is examined with multiple-object tracking as a primary task and target-change detection as a secondary task. The to-be-detected target changes in conditions of either change type (form vs. motion; Experiment 1) or change salience (stop vs. slowdown; Experiment 2), with changes occurring at either near (5°-10°) or far (15°-20°) eccentricities (Experiments 1 and 2). The aim of the study was to test whether changes can be detected solely with peripheral vision. By controlling for saccades and computing gaze distances, we could show that participants used peripheral vision to monitor the targets and, additionally, to perceive changes at both near and far eccentricities. Noticeably, gaze behavior was not affected by the actual target change. Detection rates as well as response times generally varied as a function of change condition and eccentricity, with faster detections for motion changes and near changes. However, in contrast to the effects found for motion changes, sharp declines in detection rates and increased response times were observed for form changes as a function of the eccentricities. This result can be ascribed to properties of the visual system, namely to the limited spatial acuity in the periphery and the comparably receptive motion sensitivity of peripheral vision. These findings show that peripheral vision is functional for simultaneous target monitoring and target-change detection as saccadic information suppression can be avoided and covert attention can be optimally distributed to all targets. (PsycINFO Database Record
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.