The functionality of living cells is inherently linked to subunits with dimensions ranging from several micrometers down to the nanometer scale. The cell surface plays a particularly important role. Electric signaling, including information processing, takes place at the membrane, as well as adhesion and contact. For osteoblasts, adhesion and spreading are crucial processes with regard to bone implants. Here we present a comprehensive characterization of the 3D nanomorphology of living, as well as fixed, osteoblastic cells using scanning ion conductance microscopy (SICM), which is a nanoprobing method that largely avoids mechanical perturbations. Dynamic ruffles are observed, manifesting themselves in characteristic membrane protrusions. They contribute to the overall surface corrugation, which we systematically study by introducing the relative 3D excess area as a function of the projected adhesion area. A clear anticorrelation between the two parameters is found upon analysis of ca. 40 different cells on glass and on amine-covered surfaces. At the rim of lamellipodia, characteristic edge heights between 100 and 300 nm are observed. Power spectral densities of membrane fluctuations show frequency-dependent decay exponents with absolute values greater than 2 on living osteoblasts. We discuss the capability of apical membrane features and fluctuation dynamics in aiding the assessment of adhesion and migration properties on a single-cell basis.
Surface charges at the cell–biomaterial interface are known to determine cellular functions. Previous findings on cell signaling indicate that osteoblastic cells favor certain moderately positive surface charges, whereas highly positive charges are not tolerated. In this study, we aimed to gain deeper insights into the influence exerted by surface charges on the actin cytoskeleton and the cell shape. We analyzed surfaces with a negative, moderately positive, and highly positive zeta (ζ) potential: titanium (Ti), Ti with plasma polymerized allylamine (PPAAm), and Ti with a polydiallyldimethylammonium chloride (PDADMA) multilayer, respectively. We used the software FilaQuant for automatic actin filament quantification of osteoblastic MG-63s, analyzed the cell edge height with scanning ion conductance microscopy (SICM), and described the cellular shape via a mathematical vertex model. A significant enhancement of actin filament formation was achieved on moderately positive (+7 mV) compared with negative ζ-potentials (−87 mV). A hampered cell spreading was reflected in a diminished actin filament number and length on highly positively charged surfaces (+50 mV). Mathematical simulations suggested that in these cells, cortical tension forces dominate the cell–substrate adhesion forces. Our findings present new insights into the impact of surface charges on the overall cell shape and even intracellular structures.
Molecular surface gradients can constitute electric field landscapes and serve to control local cell adhesion and migration. Cellular responses to electric field landscapes may allow the discovery of routes to improve osseointegration of implants. Flat molecule aggregate landscapes of amine- or carboxyl-teminated dendrimers, amine-containing protein and polyelectrolytes were prepared on glass to provide lateral electric field gradients through their differing zeta potentials compared to the glass substrate. The local as well as the mesoscopic morphological responses of adhered osteoblasts (MG-63) with respect to the stripes were studied by means of Scanning Ion Conductance Microscopy (SICM) and Fluorescence Microscopy, in situ. A distinct spindle shape oriented parallel to the surface pattern as well as a preferential adhesion of the cells on the glass site have been observed at a stripe and spacing width of 20 μm. Excessive ruffling is observed at the spindle poles, where the cells extend. To explain this effect of material preference and electro-deformation, we put forward a retraction mechanism, a localized form of double-sided cathodic taxis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.