We extend the notion of Poincaré duality in KK-theory to the setting of quantum group actions. An important ingredient in our approach is the replacement of ordinary tensor products by braided tensor products. Along the way we discuss general properties of equivariant KK-theory for locally compact quantum groups, including the construction of exterior products. As an example, we prove that the standard Podleś sphere is equivariantly Poincaré dual to itself.
We prove an analogue of the Baum-Connes conjecture for free orthogonal quantum groups. More precisely, we show that these quantum groups have a γ-element and that γ = 1. It follows that free orthogonal quantum groups are K-amenable. We compute explicitly their K-theory and deduce in the unimodular case that the corresponding reduced C * -algebras do not contain nontrivial idempotents. Our approach is based on the reformulation of the Baum-Connes conjecture by Meyer and Nest using the language of triangulated categories. An important ingredient is the theory of monoidal equivalence of compact quantum groups developed by Bichon, De Rijdt and Vaes. This allows us to study the problem in terms of the quantum group SUq(2). The crucial part of the argument is a detailed analysis of the equivariant Kasparov theory of the standard Podleś sphere.2000 Mathematics Subject Classification. 20G42, 46L80, 19K35.
Abstract. We define and study equivariant periodic cyclic homology for locally compact groups. This can be viewed as a noncommutative generalization of equivariant de Rham cohomology. Although the construction resembles the Cuntz-Quillen approach to ordinary cyclic homology, a completely new feature in the equivariant setting is the fact that the basic ingredient in the theory is not a complex in the usual sense. As a consequence, in the equivariant context only the periodic cyclic theory can be defined in complete generality. Our definition recovers particular cases studied previously by various authors. We prove that bivariant equivariant periodic cyclic homology is homotopy invariant, stable and satisfies excision in both variables. Moreover we construct the exterior product which generalizes the obvious composition product. Finally we prove a Green-Julg theorem in cyclic homology for compact groups and the dual result for discrete groups.
Abstract. In this paper we study the K-theory of free quantum groups in the sense of Wang and Van Daele, more precisely, of free products of free unitary and free orthogonal quantum groups. We show that these quantum groups are K-amenable and establish an analogue of the Pimsner-Voiculescu exact sequence. As a consequence, we obtain in particular an explicit computation of the K-theory of free quantum groups. Our approach relies on a generalization of methods from the Baum-Connes conjecture to the framework of discrete quantum groups. This is based on the categorical reformulation of the Baum-Connes conjecture developed by Meyer and Nest. As a main result we show that free quantum groups have a γ-element and that γ = 1. As an important ingredient in the proof we adapt the Dirac-dual Dirac method for groups acting on trees to the quantum case. We use this to extend some permanence properties of the Baum-Connes conjecture to our setting.
We introduce the spatial Rokhlin property for actions of coexact compact quantum groups on $\mathrm{C}^*$-algebras, generalizing the Rokhlin property for both actions of classical compact groups and finite quantum groups. Two key ingredients in our approach are the concept of sequentially split $*$-homomorphisms, and the use of braided tensor products instead of ordinary tensor products. We show that various structure results carry over from the classical theory to this more general setting. In particular, we show that a number of $\mathrm{C}^*$-algebraic properties relevant to the classification program pass from the underlying $\mathrm{C}^*$-algebra of a Rokhlin action to both the crossed product and the fixed point algebra. Towards establishing a classification theory, we show that Rokhlin actions exhibit a rigidity property with respect to approximate unitary equivalence. Regarding duality theory, we introduce the notion of spatial approximate representability for actions of discrete quantum groups. The spatial Rokhlin property for actions of a coexact compact quantum group is shown to be dual to spatial approximate representability for actions of its dual discrete quantum group, and vice versa.Comment: 47 pages; v2 minor corrections. This version is going to appear in J. Funct. Ana
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.