Diffusion Tensor Imaging (DTI) is being increasingly used to assess white matter integrity and it is therefore paramount to address the test–retest reliability of DTI measures. In this study we assessed inter- and intra-site reproducibility of two nominally identical 3 T scanners at different sites in nine healthy controls using a DTI protocol representative of typical current “best practice” including cardiac gating, a multichannel head coil, parallel imaging and optimized diffusion gradient parameters. We calculated coefficients of variation (CV) and intraclass correlation coefficients (ICC) of fractional anisotropy (FA) measures for the whole brain, for three regions of interest (ROI) and for three tracts derived from these ROI by probabilistic tracking. We assessed the impact of affine, nonlinear and template based methods for spatially aligning FA maps on the reproducibility. The intra-site CV for FA ranged from 0.8% to 3.0% with ICC from 0.90 to 0.99, while the inter-site CV ranged from 1.0% to 4.1% with ICC of 0.82 to 0.99. Nonlinear image coregistration improved reproducibility compared to affine coregistration. Normalization to template space reduced the between-subject variation, resulting in lower ICC values and indicating a possibly reduced sensitivity. CV from probabilistic tractography were about 50% higher than for the corresponding seed ROI.Reproducibility maps of the whole scan volume showed a low variation of less than 5% in the major white matter tracts but higher variations of 10–15% in gray matter regions.One of the two scanners showed better intra-site reproducibility, while the intra-site CV for both scanners was significantly better than inter-site CV. However, when using nonlinear coregistration of FA maps, the average inter-site CV was below 2%. There was a consistent inter-site bias, FA values on site 2 were 1.0–1.5% lower than on site 1. Correction for this bias with a global scaling factor reduced the inter-site CV to the range of intra-site CV. Our results are encouraging for multi-centre DTI studies in larger populations, but also illustrate the importance of the image processing pipeline for reproducibility.
Juvenile myoclonic epilepsy is the most frequent idiopathic generalized epilepsy syndrome. It is characterized by predominant myoclonic jerks of upper limbs, often provoked by cognitive activities, and typically responsive to treatment with sodium valproate. Neurophysiological, neuropsychological and imaging studies in juvenile myoclonic epilepsy have consistently pointed towards subtle abnormalities in the medial frontal lobes. Using functional magnetic resonance imaging with an executive frontal lobe paradigm, we investigated cortical activation patterns and interaction between cortical regions in 30 patients with juvenile myoclonic epilepsy and 26 healthy controls. With increasing cognitive demand, patients showed increasing coactivation of the primary motor cortex and supplementary motor area. This effect was stronger in patients still suffering from seizures, and was not seen in healthy controls. Patients with juvenile myoclonic epilepsy showed increased functional connectivity between the motor system and frontoparietal cognitive networks. Furthermore, we found impaired deactivation of the default mode network during cognitive tasks with persistent activation in medial frontal and central regions in patients. Coactivation in the motor cortex and supplementary motor area with increasing cognitive load and increased functional coupling between the motor system and cognitive networks provide an explanation how cognitive effort can cause myoclonic jerks in juvenile myoclonic epilepsy. The supplementary motor area represents the anatomical link between these two functional systems, and our findings may be the functional correlate of previously described structural abnormalities in the medial frontal lobe in juvenile myoclonic epilepsy.
SummaryPurpose: Anterior temporal lobe resection (ATLR) controls seizures in up to 70% of patients with intractable temporal lobe epilepsy (TLE) but, in the language dominant hemisphere, may impair language function, particularly naming. Functional reorganization can occur within the ipsilateral and contralateral hemispheres. We investigated reorganization of language in left-hemisphere–dominant patients before and after ATLR; whether preoperative functional magnetic resonance imaging (fMRI) predicts postoperative naming decline; and efficiency of postoperative language networks.Methods: We studied 44 patients with TLE due to unilateral hippocampal sclerosis (24 left) on a 3T GE-MRI scanner. All subjects performed language fMRI and neuropsychological testing preoperatively and again 4 months after left or right ATLR.Key Findings: Postoperatively, individuals with left TLE had greater bilateral middle/inferior frontal fMRI activation and stronger functional connectivity from the left inferior/middle frontal gyri to the contralateral frontal lobe than preoperatively, and this was not observed in individuals with right TLE. Preoperatively, in left and right TLE, better naming correlated with greater preoperative left hippocampal and left frontal activation for verbal fluency (VF). In left TLE, stronger preoperative left middle frontal activation for VF was predictive of greater decline in naming after ATLR. Postoperatively, in left TLE with clinically significant naming decline, greater right middle frontal VF activation correlated with better postoperative naming. In patients without postoperative naming decline, better naming correlated with greater activation in the remaining left posterior hippocampus. In right TLE, naming ability correlated with left hippocampal and left and right frontal VF activation postoperatively.Significance: In left TLE, early postoperative reorganization to the contralateral frontal lobe suggests multiple systems support language function. Postoperatively, ipsilateral recruitment involving the posterior hippocampal remnant is important for maintaining language, and reorganization to the contralateral hemisphere is less effective. Preoperative left middle frontal activation for VF was predictive of naming decline in left TLE after ATLR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.