The continuous surveillance of glucose concentration reduces short-term risks and long-term complications for people with diabetes mellitus, a disorder of glucose metabolism. As a first step towards the continuous monitoring of glucose, reagent-free transmission spectroscopy in the mid-infrared region has been carried out in vitro using a quantum cascade laser and an optical silver halide fiber. A 30 μm gap in the fiber allowed for transmission spectroscopy of aqueous glucose solutions at a wavelength of 9.69 μm, which is specific to a molecular vibration of glucose. A noise-equivalent concentration as low as 4 mg/dL was achieved at an average power of 1.8 mW and an integration time of 50 s. This is among the most precise of glucose measurements using mid-infrared spectroscopy. Even with the very low average laser power of 0.07 mW the sensitivity of previous results (using a fiber optical evanescent field analysis) has been improved upon by almost one order of magnitude. Finally, the impact of potentially interfering substances such as other carbohydrates was analyzed.
Internal organ motion during the course of radiation therapy of cancer affects the distribution of the delivered dose and, generally, reduces its conformality to the targeted volume. Previously proposed approaches aimed at mitigating the effect of internal motion in intensity-modulated radiation therapy ͑IMRT͒ included expansion of the target margins, motion-correlated delivery ͑e.g., respiratory gating, tumor tracking͒, and adaptive treatment plan optimization employing a probabilistic description of motion. We describe and test the tumor trailing strategy, which utilizes the synergy of motion-adaptive treatment planning and delivery methods. We regard the ͑rigid͒ target motion as a superposition of a relatively fast cyclic component ͑e.g., respiratory͒ and slow aperiodic trends ͑e.g., the drift of exhalation baseline͒. In the trailing approach, these two components of motion are decoupled and dealt with separately. Real-time motion monitoring is employed to identify the "slow" shifts, which are then corrected by applying setup adjustments. The delivery does not track the target position exactly, but trails the systematic trend due to the delay between the time a shift occurs, is reliably detected, and, subsequently, corrected. The "fast" cyclic motion is accounted for with a robust motion-adaptive treatment planning, which allows for variability in motion parameters ͑e.g., mean and extrema of the tidal volume, variable period of respiration, and expiratory duration͒. Motion-surrogate data from gated IMRT treatments were used to provide probability distribution data for motion-adaptive planning and to test algorithms that identified systematic trends in the character of motion. Sample IMRT fields were delivered on a clinical linear accelerator to a programmable moving phantom. Dose measurements were performed with a commercial two-dimensional ion-chamber array. The results indicate that by reducing intrafractional motion variability, the trailing strategy enhances relevance and applicability of motion-adaptive planning methods, and improves conformality of the delivered dose to the target in the presence of irregular motion. Trailing strategy can be applied to respiratory-gated treatments, in which the correction for the slow motion can increase the duty cycle, while robust probabilistic planning can improve management of the residual motion within the gate window. Similarly, trailing may improve the dose conformality in treatment of patients who exhibit detectable target motion of low amplitude, which is considered insufficient to provide a clinical indication for the use of respiratory-gated treatment ͑e.g., peak-to-peak motion of less than 10 mm͒. The mechanical limitations of implementing tumor trailing are less rigorous than those of real-time tracking, and the same technology could be used for both.
The evaporation of water from open u-shaped microchannel grooves was investigated with particular emphasis on the roles of channel width and air flow conditions. Given the small dimensions of the microchannels, all measurements were conducted in a range where convection and diffusion are of equal importance and known correlations for the calculation of mass transfer coefficients cannot be applied. The evaporation rates were measured using a new optical method and a gravimetric method. Both measurement methods yielded mass transfer coefficients that are in agreement with each other. The observed relation between mass transfer coefficient, air velocity and channel width vastly differs from the predictions obtained from macroscopic structures. With respect to diagnostic devices we conclude that analyte concentration in an open microchannel groove strongly increases even within short times due to the evaporation process and we show that wider channels are more favourable in terms of minimizing the relative evaporation rate.
Internal organ motion during radiation therapy, if not considered appropriately in the planning process, has been shown to reduce target coverage and increase the dose to healthy tissues. Standard planning approaches, which use safety margins to handle intrafractional movement of the tumor, are typically designed based on the maximum amplitude of motion, and are often overly conservative. Comparable coverage and reduced dose to healthy organs appear achievable with robust motion-adaptive treatment planning, which considers the expected probability distribution of the average target position and the uncertainty of its realization during treatment delivery. A dosimetric test of a robust optimization method for IMRT was performed, using patient breathing data. External marker motion data acquired from respiratory-gated radiotherapy patients were used to build and test the framework for robust optimization. The motion trajectories recorded during radiation treatment itself are not strictly necessary to generate the initial version of a robust treatment plan, but can be used to adapt the plan during the course of treatment. Single-field IMRT plans were optimized to deliver a uniform dose to a rectangular area. During delivery on a linear accelerator, a computer-driven motion phantom reproduced the patients' breathing patterns and a two-dimensional ionization detector array measured the dose delivered. The dose distributions from robust-optimized plans were compared to those from standard plans, which used a margin expansion. Dosimetric tests confirmed the improved sparing of the non-target area with robust planning, which was achieved without compromising the target coverage. The maximum dose in robust plans did not exceed 110% of the prescription, while the minimum target doses were comparable in standard and robust plans. In test courses, optimized for a simplified target geometry, and delivered to a phantom that moved in one dimension with an average amplitude of 17 mm, the robust treatment design produced a reduction of more than 12% of the integral dose to non-target areas, compared to the standard plan using 10 mm margin expansion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.