Purpose Magnetic resonance imaging (MRI) is the best diagnostic imaging method for low back pain. However, the technique is currently not utilized in its full capacity, often failing to depict painful intervertebral discs (IVDs), potentially due to the rough degeneration classification system used clinically today. MR image histograms, which reflect the IVD heterogeneity, may offer sensitive imaging biomarkers for IVD degeneration classification. This study investigates the feasibility of using histogram analysis as means of objective and continuous grading of IVD degeneration. Methods Forty-nine IVDs in ten low back pain patients (six males, 25-69 years) were examined with MRI (T2-weighted images and T2-maps). Each IVD was semi-automatically segmented on three mid-sagittal slices. Histogram features of the IVD were extracted from the defined regions of interest and correlated to Pfirrmann grade. Results Both T2-weighted images and T2-maps displayed similar histogram features. Histograms of well-hydrated IVDs displayed two separate peaks, representing annulus fibrosus and nucleus pulposus. Degenerated IVDs displayed decreased peak separation, where the separation was shown to correlate strongly with Pfirrmann grade (P \ 0.05). In addition, some degenerated IVDs within the same Pfirrmann grade displayed diametrically different histogram appearances. Conclusions Histogram features correlated well with IVD degeneration, suggesting that IVD histogram analysis is a suitable tool for objective and continuous IVD degeneration classification. As histogram analysis revealed IVD heterogeneity, it may be a clinical tool for characterization of regional IVD degeneration effects. To elucidate the usefulness of histogram analysis in patient management, IVD histogram features between asymptomatic and symptomatic individuals needs to be compared.
Background Magnetic resonance imaging (MRI) can provide objective continuous intervertebral disc (IVD) measures in low back pain (LBP) patients. However, there are limited studies comparing quantitative IVD measures of symptomatic and asymptomatic individuals. Purpose This study aimed to investigate possible differences in IVD tissue composition in patients with chronic LBP and controls using quantitative MRI and correlate IVD measures with the phenotype High-Intensity Zone (HIZ). Methods The lumbar spine of 25 LBP-patients (25-69y, mean 38y, 11 males) and 12 controls (25-59y, mean 38y, 7 males) was examined with T2-mapping on a 1.5T MRI scanner. The mean T2-map value and standard deviation were determined in three midsagittal IVD slices and five sub-regions dividing each IVD in the sagittal plane. The distribution of T2-map values over the IVD was also determined with histogram analysis (Δμ = distribution width). Results When compared to controls, patient IVDs displayed lower values for all metrics, with significant differences for the T2-map value, standard deviation (p = 0.026) and Δμ (p = 0.048). Significantly different T2-map values were found between cohorts in the region representing nucleus pulposus and the border zone between nucleus pulposus and posterior annulus fibrosus (p = 0.047–0.050). Excluding all IVDs with HIZs resulted in no significant difference between the cohorts for any of the analyzed metrics (p = 0.053–0.995). Additionally, the T2-map values were lower in patients with HIZ in comparison without HIZ. Conclusions Differences in IVD characteristics, measured with quantitative MRI, between LBP patients and controls were found. The T2-differences may reflect altered IVD function associated with HIZ. Future studies are recommended to explore IVD functionality in relation to HIZ and LBP.
Study Design. Retrospective analysis of prospectively collected data. Objective. The aim of this study was to investigate whether spinal loading, depicted with magnetic resonance imaging (MRI), induces regional intervertebral disc (IVD) differences associated with presence and width of annular fissure and induced pain at discography. Summary of Background Data. Annular fissures play a role in low back pain (LBP) but cannot be accurately characterized with conventional MRI. Recently, annular fissures were suggested to influence different load-induced IVD behavior during MRI when comparing LBP-patients and controls. Thus, the loading effect could characterize behavior related to annular fissures noninvasively with MRI. Methods. Lumbar spines of 30 LBP-patients were investigated with MRI with and without loading, discography and CT. Five IVD regions were outlined on sagittal MRI images. Difference in normalized signal intensity (SI) with and without loading was calculated for each region. Eighty-three CT-discograms were graded regarding presence and width of fissures. Discograms were classified as pain-positive if a concordant pain response was obtained at a pressure <50 psi. Results. Comparing IVDs with outer fissures with IVDs without fissures, loading induced different behavior in the two ventral regions and in the posterior region. Higher SI increase in the central region was induced in IVDs with narrower fissures compared to IVDs with wider fissures. In the group of pain-negative discograms, a SI decrease was induced in the dorsal region whereas lack of such in the pain-positive group. Conclusion. The spinal loading-effect, depicted with MRI, reveals different regional behaviors between IVDs with outer fissures compared to those without, and between IVDs with narrow and broad fissures, as well as within posterior annulus between pain-positive and pain-negative discograms. Findings are of importance for future attempts to uncover phenotypes of painful IVDs. Level of Evidence: 2
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.