Brown adipose tissue (BAT) burns fatty acids for heat production to defend the body against cold and has recently been shown to be present in humans. Triglyceride-rich lipoproteins (TRLs) transport lipids in the bloodstream, where the fatty acid moieties are liberated by the action of lipoprotein lipase (LPL). Peripheral organs such as muscle and adipose tissue take up the fatty acids, whereas the remaining cholesterol-rich remnant particles are cleared by the liver. Elevated plasma triglyceride concentrations and prolonged circulation of cholesterol-rich remnants, especially in diabetic dyslipidemia, are risk factors for cardiovascular disease. However, the precise biological role of BAT for TRL clearance remains unclear. Here we show that increased BAT activity induced by short-term cold exposure controls TRL metabolism in mice. Cold exposure drastically accelerated plasma clearance of triglycerides as a result of increased uptake into BAT, a process crucially dependent on local LPL activity and transmembrane receptor CD36. In pathophysiological settings, cold exposure corrected hyperlipidemia and improved deleterious effects of insulin resistance. In conclusion, BAT activity controls vascular lipoprotein homeostasis by inducing a metabolic program that boosts TRL turnover and channels lipids into BAT. Activation of BAT might be a therapeutic approach to reduce elevated triglyceride concentrations and combat obesity in humans.
Size- and shape-controlled synthesis of copper chalcogenide nanocrystals (NCs) is of paramount importance for a careful engineering and understanding of their optoelectronic properties and, thus, for their exploitation in energy- and plasmonic-related applications. From the copper chalcogenide family copper telluride NCs have remained fairly unexplored as a result of a poor size-, shape-, and monodispersity control that is achieved via one-step syntheses approaches. Here we show that copper telluride (namely Cu(2-x)Te) NCs with well-defined morphologies (spheres, rods, tetrapods) can be prepared via cation exchange of preformed CdTe NCs while retaining their original shape. The resulting copper telluride NCs are characterized by pronounced plasmon bands in the near-infrared (NIR), in analogy to other copper-deficient chalcogenides (Cu(2-x)S, Cu(2-x)Se). We demonstrate that the extinction spectra of the as-prepared NCs are in agreement with theoretical calculations based on the discrete dipole approximation and an empirical dielectric function for Cu(2-x)Te. Additionally we show that the Drude model does not appropriately describe the complete set of Cu(2-x)Te NCs with different shapes. In particular, the low-intensity longitudinal plasmon bands for nanorods and tetrapods are better described by a modified Drude model with an increased damping in the long-wavelength interval. Importantly, a Lorentz model of localized quantum oscillators describes reasonably well all three morphologies, suggesting that holes in the valence band of Cu(2-x)Te cannot be described as fully free particles and that the effects of localization of holes are important. A similar behavior for Cu2-xS and Cu(2-x)Se NCs suggests that the effect of localization of holes can be a common property for the whole class of copper chalcogenide NCs. Taken altogether, our results represent a simple route toward copper telluride nanocrystals with well-defined shapes and optical properties and extend the understanding on vacancy-doped copper chalcogenide NCs with NIR optical resonances.
We report the synthesis and characterization of monodisperse SnS nanocrystals and demonstrate shape control by varying the ratio of ligands present in the reaction mixture. The nanoparticles are subsequently linked to conducting transparent substrates, and their optoelectronic response is probed. Values of the photocurrent for this system, without attempts to optimize, in the range of 6-8 nA cm(-2) were obtained.
Our findings provide proof of principle that the selective delivery of autoantigen peptides to LSECs by NPs can induce antigen-specific Tregs and enable effective treatment of autoimmune disease. These findings highlight the importance of Treg induction by LSECs for immune tolerance.
The synthesis of high-quality cadmium phosphide quantum dots with emission wavelength maxima in the range from 1200 to approximately 760 nm are reported. The results demonstrate that the nucleation and growth linked with the optical properties can be controlled by the temperature, the growth time, and the addition of ligands such as oleylamine and trioctylphosphine. Photoelectrochemical investigations revealed that the cadmium phosphide QD-derivatized electrodes show an optical response and that photocurrents of several nanoamperes per square centimeter can be obtained upon illumination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.