Cell segmentation is a major bottleneck in extracting quantitative single-cell information from microscopy data. The challenge is exasperated in the setting of microstructured environments. While deep learning approaches have proven useful for general cell segmentation tasks, existing segmentation tools for the yeast-microstructure setting rely on traditional machine learning approaches. Here we present convolutional neural networks trained for multiclass segmenting of individual yeast cells and discerning these from cell-similar microstructures. We give an overview of the datasets recorded for training, validating and testing the networks, as well as a typical usecase. We showcase the method's contribution to segmenting yeast in microstructured environments with a typical synthetic biology application in mind. The models achieve robust segmentation results, outperforming the previous state-of-the-art in both accuracy and speed. The combination of fast and accurate segmentation is not only beneficial for a posteriori data processing, it also makes online monitoring of thousands of trapped cells or closed-loop optimal experimental design feasible from an image processing perspective.
In this work, we perform Bayesian inference tasks for the chemical master equation in the tensor-train format. The tensor-train approximation has been proven to be very efficient in representing high dimensional data arising from the explicit representation of the chemical master equation solution. An additional advantage of representing the probability mass function in the tensor train format is that parametric dependency can be easily incorporated by introducing a tensor product basis expansion in the parameter space. Time is treated as an additional dimension of the tensor and a linear system is derived to solve the chemical master equation in time. We exemplify the tensor-train method by performing inference tasks such as smoothing and parameter inference using the tensor-train framework. A very high compression ratio is observed for storing the probability mass function of the solution. Since all linear algebra operations are performed in the tensor-train format, a significant reduction of the computational time is observed as well.
Quantitatively predictive models of biomolecular circuits are important tools for the design of synthetic biology and molecular communication circuits. The information content of typical timelapse single-cell data for the inference of kinetic parameters is not only limited by measurement uncertainty and intrinsic stochasticity, but also by the employed perturbations. Novel microfluidic devices enable the synthesis of temporal chemical concentration profiles. The informativeness of a perturbation can be quantified based on mutual information. We propose an approximate method to perform optimal experimental design of such perturbation profiles. To estimate the mutual information we perform a multivariate lognormal approximation of the joint distribution over parameters and observations and scan the design space using Metropolis-Hastings sampling. The method is demonstrated by finding optimal perturbation sequences for synthetic case studies on a gene expression model with varying reporter characteristics.
Labelling of nascent stem loops with fluorescent proteins has fostered the visualization of transcription in living cells. Quantitative analysis of recorded fluorescence traces can shed light on kinetic transcription parameters and regulatory mechanisms. However, existing methods typically focus on steady state dynamics. Here, we combine a stochastic process transcription model with a hierarchical Bayesian method to infer global as well locally shared parameters for groups of cells and recover unobserved quantities such as initiation times and polymerase loading of the gene. We apply our approach to the cyclic response of the yeast CUP1 locus to heavy metal stress. Within the previously described slow cycle of transcriptional activity on the scale of minutes, we discover fast time-modulated bursting on the scale of seconds. Model comparison suggests that slow oscillations of transcriptional output are regulated by the amplitude of the bursts. Several polymerases may initiate during a burst.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.