The control system’s point is to bring the pumping curve close to the set-point curve. That concept is essential for proper design of a pumping station. An adequate design is focused not only on selecting the total number of pumps and the type of control to use (flow or pressure), but it also is important to determine the optimal number of fixed speed pumps (FSPs) and variable speed pumps (VSPs) for each flow rate. This work discusses the most common methods and procedures for control systems on a design of pumping stations with a proposed methodology. This methodology consists of expressing the characteristics of the pumping curve and the set-point curve in a dimensionless form so that the methodology is standardized for any pump model and set-point curve. These formulations allow us to discuss how the characteristic of a pump and the set-point curve of the network influence the optimal number of FSPs and VSPs in energy terms. In general, the objective of this work is to determine the most suitable total number of pumps in a pumping station design and to determine the optimal pumping configuration in every flow rate, thus the consumed energy would be the minimum. Additionally, this methodology develops an expression to estimate the performance of a frequency inverter when a VSP operates at different rotational speeds. This work will be applied to different study cases, and the obtained results allow us to question several usual procedures for pumping control system. In general, it can be concluded that the number of pumps of a pumping system cannot be inferred in a simple form without a deep analysis of a control system.
Pumping station (PS) designs in water networks basically contemplate technical and economic aspects. Technical aspects could be related to the number of pumps in PS and the operational modes of PS. Meanwhile, economic aspects could be related to all the costs that intervene in a PS design, such as investment, operational and maintenance costs. In general, water network designs are usually focused on optimizing operational costs or investment costs, However, some subjective technical aspects have not been approached, such as determining the most suitable pump model, the most suitable number of pumps and the complexity of control system operation in a PS design. Therefore, the present work aims to select the most suitable pump model and determine the priorities that technical and economic factors could have in a PS design by a multi-criteria analysis, such as an analytic hierarchy process (AHP). The proposed work will contemplate two main criteria, and every criterion will be integrated by sub-criteria to design a PS. In this way, technical factors (number of pumps and complexity of the operating system) and economic factors (investment, operational and maintenance costs) will be considered for a PS design. The proposed methodology consists of realizing surveys to a different group of experts that determines the importance of one criterion over each other criterion in a PS design through pairwise comparisons. Finally, this methodology will provide importance weight for the criteria and sub-criteria on the PS. Besides, this work will perform a rating of the considered alternatives of pump models in every case study, evaluating quantitatively every alternative with every criterion in the PS design. The main objective of this work will select the most adequate pump model according to the obtained rating, considering technical and economic aspects in every case study.
The pumping station is a very important hydraulic system in urban water supplies because the pumps raise the water head, ensuring the minimum pressure required in drinking water systems. In the design of a pumping station, one of the most important criteria is the number of pumps. However, in the traditional design, this criterion is defined arbitrarily. The other criteria are defined from the number of pumps and can produce a design that is not optimal. In addition, the traditional design does not consider the importance of the environment in choosing the pumps. The objective of this paper is to define a new design methodology for pumping stations. It has been developed using a multicriteria analysis in which nine criteria are evaluated. The application of the analytic hierarchy process (AHP) allows for finding an optimal solution. These design criteria have been associated in three cluster factors: technical factors; environmental factors; and economic factors. The results obtained allow us not only to validate the methodology but also to offer a solution to the problem of determining the most suitable model and the number of pumps for a pumping station.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.