The Yungas, a system of tropical and subtropical montane forests on the eastern slopes of the Andes, are extremely diverse and severely threatened by anthropogenic pressure and climate change. Previous mycological works focused on macrofungi (e.g. agarics, polypores) and mycorrhizae in Alnus acuminata forests, while fungal diversity in other parts of the Yungas has remained mostly unexplored. We carried out Ion Torrent sequencing of ITS2 rDNA from soil samples taken at 24 sites along the entire latitudinal extent of the Yungas in Argentina. The sampled sites represent the three altitudinal forest types: the piedmont (400-700 m a.s.l.), montane (700-1500 m a.s.l.) and montane cloud (1500-3000 m a.s.l.) forests. The deep sequence data presented here (i.e. 4 108 126 quality-filtered sequences) indicate that fungal community composition correlates most strongly with elevation, with many fungi showing preference for a certain altitudinal forest type. For example, ectomycorrhizal and root endophytic fungi were most diverse in the montane cloud forests, particularly at sites dominated by Alnus acuminata, while the diversity values of various saprobic groups were highest at lower elevations. Despite the strong altitudinal community turnover, fungal diversity was comparable across the different zonal forest types. Besides elevation, soil pH, N, P, and organic matter contents correlated with fungal community structure as well, although most of these variables were co-correlated with elevation. Our data provide an unprecedented insight into the high diversity and spatial distribution of fungi in the Yungas forests.
Alnus acuminata is a keystone tree species in the Yungas forests and host to a wide range of fungal symbionts. While species distribution models (SDMs) are routinely used for plants and animals to study the effects of climate change on montane forest communities, employing SDMs in fungi has been hindered by the lack of data on their geographic distribution. The well‐known host specificity and common biogeographic history of A. acuminata and associated ectomycorrhizal (ECM) fungi provide an exceptional opportunity to model the potential habitat for this symbiotic assemblage and to predict possible climate‐driven changes in the future. We (1) modeled the present and future distributions of suitable habitats for A. acuminata; (2) characterized fungal communities in different altitudinal zones of the Yungas using DNA metabarcoding of soil and root samples; and (3) selected fungi that were significant indicators of Alnus. Fungal communities were strongly structured according to altitudinal forest types and the presence of Alnus. Fungal indicators of Alnus, particularly ECM and root endophytic fungi, were also detected in Alnus roots. Current and future (year 2050) habitat models developed for A. acuminata predict a 25–50 percent decrease in suitable area and an upslope shift of the suitable habitat by ca. 184–380 m, depending on the climate change scenario. Although A. acuminata is considered to be an effective disperser, recent studies suggest that Andean grasslands are remarkably resistant to forest invasion, and future range contraction for A. acuminata may be even more pronounced than predicted by our models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.