Aims/hypothesis Insoluble cereal fibres have been shown in large prospective cohort studies to be highly effective in preventing type 2 diabetes, but there is a lack of interventional data. Our 2 year randomised double-blind prospective intervention study compared the effect of an insoluble oat fibre extract with that of placebo on glucose metabolism and incidence of diabetes. Methods A total of 180 participants with impaired glucose tolerance underwent a modified version of the 1 year lifestyle training programme PREvention of DIAbetes Self-management (PREDIAS) and were randomised to receive a fibre supplement (n = 89; 7.5 g of insoluble fibre per serving) or placebo (n = 91; 0.8 g of insoluble fibre per serving) twice daily for 2 years. Eligible participants were men and women, were at least 18 years old and did not report corticosteroid or other intensive anti-inflammatory treatment, fibre intolerance or any of the following disorders: overt diabetes, chronic or malignant disease, or severe cardiopulmonary, endocrine, psychiatric, gastrointestinal, autoimmune or eating disorder. Participants were recruited at two clinical wards in Berlin and Nuthetal. The allocation was blinded to participants and study caregivers (physicians, dietitians, study nurses). Randomisation was conducted by non-clinical staff, providing neutrally numbered supplement tins. Both supplements were similar in their visual, olfactory and gustatory appearance. Intention-to-treat analysis was applied to all individuals. Results After 1 year, 2 h OGTT levels decreased significantly in both groups but without a significant difference between the groups (fibre −0.78 ± 1.88 mmol/l [p ≤ 0.001] vs placebo −0.46 ± 1.80 mmol/l [p = 0.020]; total difference 0.32 ± 0.29 mmol/l; Caroline Honsek and Stefan Kabisch contributed equally to this publication.Electronic supplementary material The online version of this article (https://doi.org/10.1007/s00125-018-4582-6) contains peer-reviewed but unedited supplementary material, which is available to authorised users. not significant). The 2 year incidence of diabetes was 9/89 (fibre group) compared with 16/91 (placebo group; difference not significant). As secondary outcomes, the change in HbA 1c level was significantly different between the two groups (−0.2 ± 4.6 mmol/mol [−0.0 ± 0.0%; not significant] vs +1.2 ± 5.2 mmol/mol [+0.1 ± 0.0%; not significant]; total difference 1.4 ± 0.7 mmol/mol [0.1 + 0.0%]); p = 0.018); insulin sensitivity and hepatic insulin clearance increased in both groups. After 2 years, improved insulin sensitivity was still present in both groups, although the effect size had diminished. Separate analysis of the sexes revealed a significantly greater reduction in 2 h glucose levels for women in the fibre group (−0.88 ± 1.59 mmol/l [p ≤ 0.001] vs −0.22 ± 1.52 mmol/l [p = 0.311]; total difference 0.67 ± 0.31 mmol/l; p = 0.015). Levels of fasting glucose, adipokines and inflammatory markers remained unchanged in the two groups. Significantly increased fibre intake was restricted ...
Scope3‐Methylhistidine (3‐MH) as a potential biomarker for muscle protein turnover is influenced by meat intake but data on the impact of meat on plasma 3‐MH are scarce. We determined the association of plasma 3‐MH, 1‐methylhistidine (1‐MH), and creatinine with dietary habits and assessed the impact of a single white meat intervention during a meat‐free period.Methods and resultsPlasma 3‐MH, 1‐MH, and creatinine concentrations of healthy young omnivores (n = 19) and vegetarians (n = 16) were analyzed together with data on anthropometry, body composition, grip strength, and nutrition. After baseline measurements omnivores adhered to a meat‐free diet for 6 days and received a defined administration of chicken breast on day four. At baseline, omnivores had higher plasma 3‐MH and 1‐MH concentrations than vegetarians. White meat administration led to a slight increase in plasma 3‐MH in omnivores. The elevated 3‐MH concentrations significantly declined within 24 h after white meat intake.Conclusion1‐MH concentrations in plasma seem to be suitable to display (white) meat consumption and its influence on 3‐MH plasma concentration. 3‐MH in plasma may be used as a biomarker for muscle protein turnover if subjects have not consumed meat in the previous 24 h.
WNT1 inducible signaling pathway protein 1 (WISP-1/CCN4) is a novel adipokine, which is upregulated in obesity, and induces a pro-inflammatory response in macrophages in-vitro. Preclinical observations suggested WISP-1/CCN4 as a potential candidate for novel obesity therapy targeting adipose tissue inflammation. Whether circulating levels of WISP-1/CCN4 in humans are altered in obesity and/or type 2 diabetes (T2DM) and in the postprandial state, however, is unknown. This study assessed circulating WISP-1/CCN4 levels in a) paired liquid meal tests and hyperinsulinemic- euglycemic clamps (cohort I, n = 26), b) healthy individuals (cohort II, n = 207) and c) individuals with different stages of obesity and glucose tolerance (cohort III, n = 253). Circulating plasma and serum WISP-1/CCN4 concentrations were measured using a commercially available ELISA. WISP-1/CCN4 levels were not influenced by changes in insulin and/or glucose during the tests. In healthy individuals, WISP-1/CCN4 was detectable in 13% of plasma samples with the intraclass correlation coefficient of 0.93 (95% CI: 0.84-0.96) and in 58.1% of the serum samples in cohort III. Circulating WISP-1/CCN4 positively correlated with body mass index, body fat percentage, leptin and triglyceride levels, hip circumference and fatty liver index. No differences in WISP-1/CCN4 levels between individuals with normal glucose tolerance, impaired glucose tolerance and T2DM were found. The circulating concentrations of WISP-1/CCN4 showed no acute regulation in postprandial state and correlated with anthropometrical obesity markers and lipid profiles. In healthy individuals, WISP-1/CCN4 levels are more often below the detection limit. Thus, serum WISP-1/CCN4 levels may be used as a suitable biomarker of obesity.
Background: High intake of cereal fibre is associated with reduced risk for type 2 diabetes and long-term complications. Within the first long-term randomized controlled trial specifically targeting cereal fibre, the Optimal Fibre Trial (OptiFiT), intake of insoluble oat fibre was shown to significantly reduce glycaemia. Previous studies suggested that this effect might be limited to subjects with impaired fasting glucose (IFG). Aim: We stratified the OptiFiT cohort for normal and impaired fasting glucose (NFG, IFG) and conducted a secondary analysis comparing the effects of fibre supplementation between these subgroups. Methods: 180 Caucasian participants with impaired glucose tolerance (IGT) were randomized to twice-a-day fibre or placebo supplementation for 2 years (n = 89 and 91, respectively), while assuring double-blinded intervention. Fasting blood sampling, oral glucose tolerance test and full anthropometry were assessed annually. At baseline, out of 136 subjects completing the first year of intervention, 72 (54%) showed IFG and IGT, while 64 subjects had IGT only (labelled “NFG”). Based on these two groups, we performed a stratified per-protocol analysis of glycometabolic and secondary effects during the first year of intervention. Results: The NFG group did not show significant differences between fibre and placebo group concerning anthropometric, glycometabolic, or other biochemical parameters. Within the IFG stratum, 2-h glucose, HbA1c, and gamma-glutamyl transferase levels decreased more in the fibre group, with a significant supplement x IFG interaction effect for HbA1c. Compared to NFG subjects, IFG subjects had larger benefits from fibre supplementation with respect to fasting glucose levels. Results were robust against adjustment for weight change and sex. An ITT analysis did not reveal any differences from the per-protocol analysis. Conclusions: Although stratification resulted in relatively small subgroups, we were able to pinpoint our previous findings from the entire cohort to the IFG subgroup. Cereal fibre can beneficially affect glycemic metabolism, with most pronounced or even isolated effectiveness in subjects with impaired fasting glucose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.