BackgroundSteatosis is routinely assessed histologically in clinical practice and research. Automated image analysis can reduce the effort of quantifying steatosis. Since reproducibility is essential for practical use, we have evaluated different analysis methods in terms of their agreement with stereological point counting (SPC) performed by a hepatologist.MethodsThe evaluation was based on a large and representative data set of 970 histological images from human patients with different liver diseases. Three of the evaluated methods were built on previously published approaches. One method incorporated a new approach to improve the robustness to image variability.ResultsThe new method showed the strongest agreement with the expert. At 20× resolution, it reproduced steatosis area fractions with a mean absolute error of 0.011 for absent or mild steatosis and 0.036 for moderate or severe steatosis. At 10× resolution, it was more accurate than and twice as fast as all other methods at 20× resolution. When compared with SPC performed by two additional human observers, its error was substantially lower than one and only slightly above the other observer.ConclusionsThe results suggest that the new method can be a suitable automated replacement for SPC. Before further improvements can be verified, it is necessary to thoroughly assess the variability of SPC between human observers.
.
Purpose:
Hippocampus contouring for radiotherapy planning is performed on MR image data due to poor anatomical visibility on computed tomography (CT) data. Deep learning methods for direct CT hippocampus auto-segmentation exist, but use MR-based training contours. We investigate if these can be replaced by CT-based contours without loss in segmentation performance. This would remove the MR not only from inference but also from training.
Approach:
The hippocampus was contoured by medical experts on MR and CT data of 45 patients. Convolutional neural networks (CNNs) for hippocampus segmentation on CT were trained on CT-based or propagated MR-based contours. In both cases, their predictions were evaluated against the MR-based contours considered as the ground truth. Performance was measured using several metrics, including Dice score, surface distances, and contour Dice score. Bayesian dropout was used to estimate model uncertainty.
Results:
CNNs trained on propagated MR contours (median Dice 0.67) significantly outperform those trained on CT contours (0.59) and also experts contouring manually on CT (0.59). Differences between the latter two are not significant. Training on MR contours results in lower model uncertainty than training on CT contours. All contouring methods (manual or CNN) on CT perform significantly worse than a CNN segmenting the hippocampus directly on MR (median Dice 0.76). Additional data augmentation by rigid transformations improves the quantitative results but the difference remains significant.
Conclusions:
CT-based training contours for CT hippocampus segmentation cannot replace propagated MR-based contours without significant loss in performance. However, if MR-based contours are used, the resulting segmentations outperform experts in contouring the hippocampus on CT.
The development of segmentation algorithms for liver tumors in CT scans has found growing attention in recent years. The validation of these methods, however, is often treated as a subordinate task. In this article, we review existing approaches and present rst steps towards a new methodology that evaluates the quality of an algorithm in relation to the variability of manual delineations. We obtained three manual segmentations for 50 liver lesions and computed the results of a segmentation algorithm. We compared all four masks with each other and with different ground truth estimates and calculated scores according to the validation framework from the MICCAI challenge 2008. Our results show some cases where this more elaborate evaluation reflects the segmentation quality in a more adequate way than traditional approaches. The concepts can also be extended to other similar segmentation problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.