M ore than 50 years after its contemporary description, hypertrophic cardiomyopathy (HCM) remains the most common cause of sudden death in the young. [1][2][3][4][5][6] Although several clinical markers have proved to be useful guides for risk stratification, 3-5,7 current strategies do not identify all HCM patients at risk for sudden death. 3,5,8,9 Over the last Background-Hypertrophic cardiomyopathy (HCM) is the most common cause of sudden death in the young, although not all patients eligible for sudden death prevention with an implantable cardioverter-defibrillator are identified. Contrast-enhanced cardiovascular magnetic resonance with late gadolinium enhancement (LGE) has emerged as an in vivo marker of myocardial fibrosis, although its role in stratifying sudden death risk in subgroups of HCM patients remains incompletely understood. Methods and Results-We assessed the relation between LGE and cardiovascular outcomes in 1293 HCM patients referred for cardiovascular magnetic resonance and followed up for a median of 3.3 years. Sudden cardiac death (SCD) events (including appropriate defibrillator interventions) occurred in 37 patients (3%
Background— Genotyping in hypertrophic cardiomyopathy has gained increasing attention in the past decade. Its major role is for family screening and rarely influences decision-making processes in any individual patient. It is associated with substantial costs, and cost-effectiveness can only be achieved in the presence of high-detection rates for disease-causing sarcomere protein gene mutations. Therefore, our aim was to develop a score based on clinical and echocardiographic variables that allows prediction of the probability of a positive genotype. Methods and Results— Clinical and echocardiographic variables were collected in 471 consecutive patients undergoing genetic testing at a tertiary referral center between July 2005 and November 2010. Logistic regression for a positive genotype was used to construct integer risk weights for each independent predictor variable. These were summed for each patient to create the Toronto hypertrophic cardiomyopathy genotype score. A positive genotype was found in 163 of 471 patients (35%). Independent predictors with associated-risk weights in parentheses were as follows: age at diagnosis 20 to 29 (−1), 30 to 39 (−2), 40 to 49 (−3), 50 to 59 (−4), 60 to 69 (−5), 70 to 79 (−6), ≥80 (−7); female sex (4); arterial hypertension (−4); positive family history for hypertrophic cardiomyopathy (6); morphology category (5); ratio of maximal wall thickness:posterior wall thickness <1.46 (0), 1.47 to 1.70 (1), 1.71 to 1.92 (2), 1.93 to 2.26 (3), ≥2.27 (4). The model had a receiver operator curve of 0.80 and Hosmer–Lemeshow goodness-of-fit P =0.22. Conclusions— The Toronto genotype score is an accurate tool to predict a positive genotype in a hypertrophic cardiomyopathy cohort at a tertiary referral center.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.