The architecture of the fetal villous tree and its vasculature in the bovine placentome were studied in the second half of gestation using both conventional histology and histology of ink-filled blood vessels. These were compared with corrosion casts of plastic fillings of the vasculature, prepared for scanning electron microscopy. This combination of morphological methods allows perception of the villous tree throughout gestation from broad-conical to tall-conical form where branch ramification occurs mainly at right angles to the stem. The stem villus typically contains a single central artery and several peripheral veins arranged in parallel. The proximal branches to the stem, the intermediate villi, contain a central arteriole and accompanying venules. The distal branches, the terminal villi, enclose capillary convolutions which consist of an afferent arterial capillary limb, capillary loops and efferent venous capillary limbs. Vascular interconnections exist within the terminal villi, as capillaries or venules between the capillary convolutions, serially bridging them in up to 5 places, and as capillary anastomoses between the capillary loops. Coiling and sinusoidal dilatations of these loops develop near the end of gestation. The intraplacentomal rearrangement of villous trees with progressive gestation and their morphological vascular adaptations are discussed in relation to placental function, including the ever increasing need for transplacental substance exchange. This adaptation allows the blood to traverse the shortest possible arterioarteriolar route to the periphery of the trees where exchange takes place. The need for an increasing blood flow stimulates capillary growth and at the same time optimises the blood flow reaching the placental barrier represented by the vessel cast surface. The capillaries also carry the blood back into the very voluminous system of venules and veins where back diffusion may occur. The total volume of terminal villi of bovine placentome, the ' working part ' of villous trees, hence distinctly increases with respect to the stem and intermediate villi, the ' supplying part ' of the villous tree. In morphological terms the efficiency of the bovine transplacental diffusional exchange is higher than in the closely related ' co-ruminants ' sheep and goats and distinctly higher when compared with the human placenta.
The microvasculature of both the ruminant placentomes of cattle, sheep, and goats and the human placenta were compared, using corrosion casts of blood vessels and scanning electron microscopy. The fetal vascular trees of ruminant and human placenta differ in form and size, which correlates with the degree of ramification; however, their architecture of stem, intermediate, and terminal villi is similar. In the human, the system of serially linked capillary convolutions of terminal villi is longer than that in ruminants. Therefore, in guaranteeing blood flow against flow resistance, the human vessels particularly need a straight course, anastomoses, and sinusoidal dilations. Specifically in the ruminants studied, the venous vessels outweigh the arterial ones by volume and by number. They are suggested to be absorptive for substances metabolized in the zone of the capillary complex. The most extreme interspecies difference relates to the maternal vasculature, which, in contrast to the fetal system, is a closed system in the ruminant septas and an open lacunal intervillous space in the human. Converging and differing morphological vascular phenomena of ruminants and human placenta are discussed in terms of maternofetal exchange related to placental efficiency. In summary, the ruminant placenta, concerning the fetal vascular tree, in many aspects is workable as a model for the human.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.