SummaryThe present study was performed to gain insight into the role of p53 on the cytotoxicity of tubulin-binding agents (TBA) on cancer cells. Drug sensitivity, cell cycle distribution and drug-induced apoptosis were compared in 2 lines derived from the mammary adenocarcinoma MCF-7: the MN-1 cell line containing wild-type p53 (wt-p53) and the MDD2 line, containing a dominant negative variant of the p53 protein (mut-p53). The MDD2 cell line was significantly more resistant to the cytotoxic effects of vinblastine and paclitaxel than the MN1 cell line. MN1 cells, but not MDD2 cells, displayed wt-p53 protein accumulation as well as p21/WAF1 and cyclin G1 induction after exposure to TBA. Both cell lines arrested at G 2 /M after drug treatment. However exposure of MN1 cells to TBA resulted in a stronger variation in mitochondrial membrane potential, associated with cleavage of PARP, and more apoptosis, as measured by annexin V expression. After exposure to vinblastine, Raf 1 kinase activity was reduced in MDD2 cells but not in MN1 cells. Addition of flavopiridol to vinblastine-and paclitaxel-treated cells reversed the MDD2-resistant phenotype by inducing G 1 cell cycle arrest and inhibiting endoreduplication. We conclude that the p53 status of cancer cells influences their sensitivity to TBA cytotoxicity. This effect is likely to involve differences in the apoptotic cascade.
A possible role of palmitic acid/Ca2+ (PA/Ca2+) complexes in the cyclosporin-insensitive permeability transition in mitochondria has been studied. It has been shown that in the presence of Ca2+, PA induces a swelling of mitochondria, which is not inhibited by cyclosporin A. The swelling is accompanied by a drop in membrane potential, which cannot be explained only by a work of the Ca2+ uniporter. With time, the potential is restored. Evidence has been obtained indicating that the specific content of mitochondrial lipids would favor the PA/Ca2+ -induced permeabilization of the membrane. In experiments with liposomes, the PA/Ca2+ -induced membrane permeabilization was larger for liposomes formed from the mitochondrial lipids, as compared to the azolectin liposomes. Additionally, it has been found that in mitochondria of the TNF (tumor necrosis factor)-sensitive cells (WEHI-164 line), the content of PA is larger than in mitochondria of the TNF-insensitive cells (C6 line), with this difference being mainly provided by PA incorporated in phosphatidylethanolamine and especially, cardiolipin. The PA/Ca2+ -dependent mechanism of permeability transition in mitochondria might be related to some pathologies, e.g. myocardial ischemia. The heaviness of myocardial infarction of ischemic patients has been demonstrated to correlate directly with the content of PA in the human blood serum.
A mitochondrial hydrophobic component that forms Ca2+-induced nonspecific ion channels in black-lipid membranes (Mironova et al., 1997) has been purified and its nature elucidated. It consists of long-chain saturated fatty acids--mainly palmitic and stearic. These fatty acids, similar to the mitochondrial hydrophobic component, bind Ca2+ with high affinity in comparison with unsaturated fatty acids, saturated fatty acids with shorter aliphatic chains, phospholipids, and other lipids. Ca2+-binding is inhibited by Mg2+ but not by K+. For palmitic acid, the Kd for Ca2+ was 5 microM at pH 8.5 and 15 microM at pH 7.5, with the Bmax of 0.48 +/- 0.08 mmol/g. This corresponds to one Ca2+ ion for eight palmitic acid molecules. The data of IR spectroscopy confirm that Ca2+ does not form ionic bonds with palmitic and stearic acids under hydrophobic conditions. It has been found that in the presence of Ca2+, palmitic and stearic acids, but not unsaturated FFA induce a nonspecific permeability in black-lipid membranes. Addition of Ca2+ in order to induce the permeability transition, increases the extractable amount of palmitic and stearic acids, the effect being prevented by a phospholipase A2 inhibitor. The possible involvement of palmitic and stearic acids in the mitochondrial nonspecific permeability is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.