This biomolecular approach to studying and detecting resistance is easier to carry out than the phenotypic approach measuring blood coagulation time because it can be conducted on biological samples from dead animals, and it is less dangerous for the operator.
A warfarin-resistant strain and a warfarin-susceptible strain of wild rats (Rattus norvegicus) maintained in enclosures of the National Veterinary School of Lyon (France) were studied to determine the mechanism of the resistance to anticoagulant rodenticides. A low vitamin K epoxide reductase (VKOR) activity has been reported for many resistant rat strains. As recently suggested, mutations in the vitamin K epoxide reductase subunit 1 (VKORC1) gene are the genetic basis of anticoagulant resistance in wild populations of rats from various locations in Europe. Here we report, for our strain, one of the seven described mutations (Tyr139Phe) for VKORC1 in rats. In addition, a low expression of mRNA encoding VKORC1 gene is observed in resistant rats, which could explain their low VKOR activity. We calculated kinetic parameters of VKOR in the warfarin-resistant and warfarin-susceptible rats. The V(max) and the K(m) of the VKOR obtained in resistant rats were lowered by 57 and 77%, respectively, compared to those obtained in susceptible rats. As a consequence, the enzymatic efficiency (V(m)/K(m)) of the VKOR was similar between resistant and susceptible rats. This result could be a good explanation to the observation that no clinical signs of vitamin K deficiency was observed in the warfarin-resistant strain, while a low VKOR activity was found. VKOR activity in warfarin-resistant rats was poorly inhibited by warfarin (K(i) for warfarin is 29 microM and 0.72 microM for resistant and susceptible rats, respectively).
Objectives
In humans, warfarin is used as an anticoagulant to reduce the risk of thromboembolic clinical events. Warfarin derivatives are also used as rodenticides in pest control. The gene encoding the protein targeted by anticoagulants is the Vitamin K-2,3-epoxide reductase subunit 1 (VKORC1). Since its discovery in 2004, various amino acid and transcription-regulatory altering VKORC1 mutations have been identified in patients who required extreme antivitamin K dosages, or wild populations of rodents that were difficult to control with anticoagulant rodenticides. One unresolved question concerns the dependency of the VKORC1 on the genetic background in humans and rodents that respond weakly or not at all to anticoagulants. Moreover, an important question requiring further analyses concerns the role of the Vkorc1 gene in mediating resistance to more recently developed warfarin derivatives (superwarfarins).
Methods
In this study, we bred a quasicongenic rat strain by using a wild-caught anticoagulant resistant rat as a donor to introduce the Y > F amino acid change at position 139 in the Vkorc1 into the genetic background of an anticoagulant susceptible Spraque–Dawley recipient strain.
Results and conclusion
In this manuscript we report the prothrombin times measured in the F7 generation after exposure to chlorophacinone, bromadiolone, difenacoum and difethialone. We observed that the mutation Y139F mediates resistance in an otherwise susceptible genetic background when exposed to chlorophacinone and bromadiolone. However, the physiological response to the super-warfarins, difenacoum and difethialone, may be strongly dependent on other genes located outside the congenic interval (28.3 cM) bracketing the Vkorc1 in our F7 generation congenic strain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.