It is well known that biofilm formation by pathogenic staphylococci on implanted medical devices leads to "chronic polymer-associated infections." Bacteria in these biofilms are more resistant to antibiotics and the immune defense system than their planktonic counterparts, which suggests that the cells in a biofilm have altered metabolic activity. To determine which genes are up-regulated in Staphylococcus aureus biofilm cells, we carried out a comparative transcriptome analysis. Biofilm growth was simulated on dialysis membranes laid on agar plates. Staphylococci were cultivated planktonically in Erlenmeyer flasks with shaking. mRNA was isolated at five time points from cells grown under both conditions and used for hybridization with DNA microarrays. The gene expression patterns of several gene groups differed under the two growth conditions. In biofilm cells, the cell envelope appeared to be a very active compartment since genes encoding binding proteins, proteins involved in the synthesis of murein and glucosaminoglycan polysaccharide intercellular adhesin, and other enzymes involved in cell envelope synthesis and function were significantly up-regulated. In addition, evidence was obtained that formate fermentation, urease activity, the response to oxidative stress, and, as a consequence thereof, acid and ammonium production are up-regulated in a biofilm. These factors might contribute to survival, persistence, and growth in a biofilm environment. Interestingly, toxins and proteases were up-regulated under planktonic growth conditions. Physiological and biochemical tests for the up-regulation of urease, formate dehydrogenase, proteases, and the synthesis of staphyloxanthin confirmed the microarray data.
A lipoprotein diacylglyceryl transferase (lgt) deletion mutant of Staphylococcus aureus SA113 was constructed. The lipoprotein and prelipoprotein expression, the growth behavior, and the ability of the mutant to elicit an immune response in various host cells were studied. In the wild type, the majority of [ 14 C]palmitate-labeled lipoproteins were located in the membrane fraction, although some lipoproteins were also present on the cell surface and in the culture supernatant. The lgt mutant completely lacked palmitate-labeled lipoproteins and released high amounts of some unmodified prelipoproteins, e.g., the oligopeptide-binding protein OppA, the peptidyl-prolyl cis-trans isomerase PrsA, and the staphylococcal iron transporter SitC, into the culture supernatant. The growth of the lgt mutant was hardly affected in rich medium but was retarded under nutrient limitation. The lgt mutant and its crude lysate induced much fewer proinflammatory cytokines and chemokines in human monocytic (MonoMac6), epithelial (pulmonary A549), and endothelial (human umbilical vein endothelial) cells than the wild type. However, in whole blood samples, the culture supernatant of the lgt mutant was equal or even superior to the wild-type supernatant in tumor necrosis factor alpha induction. Lipoprotein fractionation experiments provided evidence that a small proportion of the mature lipoproteins are released by the S. aureus wild type despite the lipid anchor and are trapped in part by the cell wall, thereby exposing the immune-activating lipid structure on the cell surface. Bacterial lipoproteins appear to be essential for a complete immune stimulation by gram-positive bacteria.
It has been shown recently that modification of peptidoglycan by O-acetylation renders pathogenic staphylococci resistant to the muramidase activity of lysozyme. Here, we show that a Staphylococcus aureus double mutant defective in O-acetyltransferase A (OatA), and the glycopeptide resistance-associated two-component system, GraRS, is much more sensitive to lysozyme than S. aureus with the oatA mutation alone. The graRS single mutant was resistant to the muramidase activity of lysozyme, but was sensitive to cationic antimicrobial peptides (CAMPs) such as the human lysozyme-derived peptide 107R-A-W-V-A-W-R-N-R115 (LP9), polymyxin B, or gallidermin. A comparative transcriptome analysis of wild type and the graRS mutant revealed that GraRS controls 248 genes. It up-regulates global regulators (rot, sarS, or mgrA), various colonization factors, and exotoxin-encoding genes, as well as the ica and dlt operons. A pronounced decrease in the expression of the latter two operons explains why the graRS mutant is also biofilm-negative. The decrease of the dlt transcript in the graRS mutant correlates with a 46.7% decrease in the content of esterified d-alanyl groups in teichoic acids. The oatA/dltA double mutant showed the highest sensitivity to lysozyme; this mutant completely lacks teichoic acid–bound d-alanine esters, which are responsible for the increased susceptibility to CAMPs and peptidoglycan O-acetylation. Our results demonstrate that resistance to lysozyme can be dissected into genes mediating resistance to its muramidase activity (oatA) and genes mediating resistance to CAMPs (graRS and dlt). The two lysozyme activities act synergistically, as the oatA/dltA or oatA/graRS double mutants are much more susceptible to lysozyme than each of the single mutants.
Several environmental stresses have been demonstrated to increase polysaccharide intercellular adhesin (PIA) synthesis and biofilm formation by the human pathogens Staphylococcus aureus and Staphylococcus epidermidis. In this study we characterized an adaptive response of S. aureus SA113 to nitrite-induced stress and show that it involves concomitant impairment of PIA synthesis and biofilm formation. Transcriptional analysis provided evidence that nitrite, either as the endogenous product of respiratory nitrate reduction or after external addition, causes repression of the icaADBC gene cluster, mediated likely by IcaR. Comparative microarray analysis revealed a global change in gene expression during growth in the presence of 5 mM sodium nitrite and indicated a response to oxidative and nitrosative stress. Many nitrite-induced genes are involved in DNA repair, detoxification of reactive oxygen and nitrogen species, and iron homeostasis. Moreover, preformed biofilms could be eradicated by the addition of nitrite, likely the result of the formation of toxic acidified nitrite derivatives. Nitrite-mediated inhibition of S. aureus biofilm formation was abrogated by the addition of nitric oxide (NO) scavengers, suggesting that NO is directly or indirectly involved. Nitrite also repressed biofilm formation of S. epidermidis RP62A.Staphylococcus aureus and Staphylococcus epidermidis are the pathogens of nosocomial sepsis most frequently isolated, and especially those patients with indwelling medical devices are at risk for chronic staphylococcal foreign body-associated infections (39, 51, 52, 69), which are mediated by the organisms' ability to form biofilms on metal or polymeric surfaces (22, 73). Biofilm-embedded bacteria are more resistant to antimicrobial agents than their planktonic counterparts and often cause chronic infections and sepsis, particularly in immunocompromised patients (14,36,42,60,65). Staphylococcal biofilm formation is a multifactorial process. Primary attachment can be mediated by various cell surface-associated factors such as the major autolysin (5, 25), the teichoic acids (23), or the polysaccharide intercellular adhesin (PIA) (24), the product of the icaADBC gene cluster (26). The accumulation of cells into a multilayered community requires the synthesis of PIA, which consists of polymeric N-acetylglucosamine (40) and is also referred to as PNAG. Furthermore, PIA-independent mechanisms of intercellular adhesion and biofilm formation have been reported and are of overall importance (17, 58). PIA expression and biofilm formation are induced by a variety of environmental stresses, like low oxygen (16), high osmolarity (3% NaCl) (53), the presence of ethanol (34), subinhibitory concentrations of tetracycline and the streptogramin quinupristin-dalfopristin (54), and during the course of a devicerelated infection (20).Nitrate (NO 3 Ϫ ) and nitrite (NO 2 Ϫ ) can be used as terminal electron acceptors under anaerobic conditions. In Staphylococcus carnosus, the membrane-bound respiratory nitrate reduc...
Here, we investigate the functionality of the oxygen-responsive nitrogen regulation system NreABC in the human pathogen Staphylococcus aureus and evaluate its role in anaerobic gene regulation and virulence factor expression. Deletion of nreABC resulted in severe impairment of dissimilatory nitrate and nitrite reduction and led to a small-colony phenotype in the presence of nitrate during anaerobic growth. For characterization of the NreABC regulon, comparative DNA microarray and proteomic analyses between the wild type and nreABC mutant were performed under anoxic conditions in the absence and presence of nitrate. A reduced expression of virulence factors was not observed in the mutant. However, both the transcription of genes involved in nitrate and nitrite reduction and the accumulation of corresponding proteins were highly decreased in the nreABC mutant, which was unable to utilize nitrate as a respiratory oxidant and, hence, was forced to use fermentative pathways. These data were corroborated by the quantification of the extracellular metabolites lactate and acetate. Using an Escherichia coli-compatible two-plasmid system, the activation of the promoters of the nitrate and nitrite reductase operons and of the putative nitrate/nitrite transporter gene narK by NreBC was confirmed. Overall, our data indicate that NreABC is very likely a specific regulation system that is essential for the transcriptional activation of genes involved in dissimilatory reduction and transport of nitrate and nitrite. The study underscores the importance of NreABC as a fitness factor for S. aureus in anoxic environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.