Abstract. It is control that turns scientific knowledge into useful technology: in physics and engineering it provides a systematic way for driving a dynamical system from a given initial state into a desired target state with minimized expenditure of energy and resources. As one of the cornerstones for enabling quantum technologies, optimal quantum control keeps evolving and expanding into areas as diverse as quantumenhanced sensing, manipulation of single spins, photons, or atoms, optical spectroscopy, photochemistry, magnetic resonance (spectroscopy as well as medical imaging), quantum information processing and quantum simulation. In this communication, state-of-the-art quantum control techniques are reviewed and put into perspective by a consortium of experts in optimal control theory and applications to spectroscopy, imaging, as well as quantum dynamics of closed and open systems. We address key challenges and sketch a roadmap for future developments. ForewordThe authors of this paper represent the QUAINT consortium, a European Coordination Action on Optimal Control of Quantum Systems, funded by the European Commission Framework Programme 7, Future Emerging Technologies FET-OPEN programme and the Virtual Facility for Quantum Control (VF-QC). This consortium has considerable expertise in optimal control theory and its applications to quantum systems, both in existing areas, such as spectroscopy and imaging, and in emerging quantum technologies, such as quantum information processing, quantum communication, quantum simulation a e-mail: fwm@lusi.uni-sb.de and quantum sensing. The list of challenges for quantum control has been gathered by a broad poll of leading researchers across the communities of general and mathematical control theory, atomic, molecular-, and chemical physics, electron and nuclear magnetic resonance spectroscopy, as well as medical imaging, quantum information, communication and simulation. 144 experts in these fields have provided feedback and specific input on the state of the art, mid-term and long-term goals. Those have been summarized in this document, which can be viewed as a perspectives paper, providing a roadmap for the future development of quantum control. Because such an endeavour can hardly ever be complete (there are many additional areas of quantum control applications, such as spintronics, nano-optomechanical technologies etc.), this roadmap
The non-linear optimization method developed by A. Konnov and V. Krotov [Autom. Remote Cont. (Engl. Transl.) 60, 1427 (1999)] has been used previously to extend the capabilities of optimal control theory from the linear to the non-linear Schrödinger equation [S. E. Sklarz and D. J. Tannor, Phys. Rev. A 66, 053619 (2002)]. Here we show that based on the Konnov-Krotov method, monotonically convergent algorithms are obtained for a large class of quantum control problems. It includes, in addition to nonlinear equations of motion, control problems that are characterized by non-unitary time evolution, nonlinear dependencies of the Hamiltonian on the control, time-dependent targets, and optimization functionals that depend to higher than second order on the time-evolving states. We furthermore show that the nonlinear (second order) contribution can be estimated either analytically or numerically, yielding readily applicable optimization algorithms. We demonstrate monotonic convergence for an optimization functional that is an eighth-degree polynomial in the states. For the "standard" quantum control problem of a convex final-time functional, linear equations of motion and linear dependency of the Hamiltonian on the field, the second-order contribution is not required for monotonic convergence but can be used to speed up convergence. We demonstrate this by comparing the performance of first- and second-order algorithms for two examples.
The advent of quantum devices, which exploit the two essential elements of quantum physics, coherence and entanglement, has sparked renewed interest in the control of open quantum systems. Successful implementations face the challenge to preserve the relevant nonclassical features at the level of device operation. A major obstacle is decoherence which is caused by interaction with the environment. Optimal control theory is a tool that can be used to identify control strategies in the presence of decoherence. We review here recent advances in optimal control methodology that allow for tackling typical tasks in device operation for open quantum systems and discuss examples of relaxation-optimized dynamics. Optimal control theory is also a useful tool to exploit the environment for control. We discuss examples and point out possible future extensions.
Anisotropy is a fundamental property of particle interactions. It occupies a central role in cold and ultra-cold molecular processes, where long-range forces have been found to significantly depend on orientation in ultra-cold polar molecule collisions 1,2 . Recent experiments have demonstrated the emergence of quantum phenomena such as scattering resonances in the cold collisions regime due to quantization of the intermolecular degrees of freedom 3-8 . Although these states have been shown to be sensitive to interaction details, the effect of anisotropy on quantum resonances has eluded experimental observation so far. Here, we directly measure the anisotropy in atom-molecule interactions via quantum resonances by changing the quantum state of the internal molecular rotor. We observe that a quantum scattering resonance at a collision energy of appears in the Penning ionization of molecular hydrogen with metastable helium only if the molecule is rotationally excited. We use state of the art ab initio and multichannel quantum molecular dynamics calculations to show that the anisotropy contributes to the effective interaction only for molecules in the first excited rotational state, whereas rotationally ground state interacts purely isotropically with metastable helium. Control over the quantum state of the internal molecular rotation allows us to switch the anisotropy on or off and thus disentangle the isotropic and anisotropic parts of the interaction. These quantum phenomena provide a challenging benchmark for even the most advanced theoretical descriptions, highlighting the advantage of using cold collisions to advance the microscopic understanding of particle interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.