We have previously shown that regulatory CD25+CD4+ T cells are resistant to clonal deletion induced by viral superantigen in vivo. In this work we report that isolated CD25+CD4+ T cells activated in vitro by anti-CD3 Ab are resistant to Fas-induced apoptosis, in contrast to their CD25−CD4+ counterparts. Resistance of CD25+CD4+ T cells to Fas-dependent activation-induced cell death is not linked to their inability to produce IL-2 or to their ability to produce IL-10. The sensitivity of both populations to Fas-induced apoptosis can be modulated in vitro by changing the CD25+CD4+:CD25−CD4+ T cell ratio. The sensitivity of CD25−CD4+ T cells to apoptosis can be reduced, while the sensitivity of CD25+CD4+ T cells can be enhanced. Modulation of Fas-dependent apoptosis is associated with changes in cytokine production. However, while CD25−CD4+ T cell apoptosis is highly dependent on IL-2 (production of which is inhibited by CD25+CD4+ T cells in coculture), modulation of CD25+CD4+ T cell apoptosis is IL-2 independent. Taken together, these results suggest that CD25+CD4+ and CD25−CD4+ T cell sensitivity to Fas-dependent apoptosis is dynamically modulated during immune responses; this modulation appears to help maintain a permanent population of regulatory T cells required to control effector T cells.
+ regulatory T cells have major roles in controlling immune responses, and use heterogeneous regulatory mechanisms. It is possible that these different activities are mediated by different subsets. Here we show that CD103 + CD25 + CD4 + T cells (that control inflammatory bowel disease) are highly enriched in gut-associated lymphoid tissue and have unique functional properties. In vivo, only this subpopulation is able to control wasting disease and peripheral T cell homeostasis. In vitro, only this subpopulation is able to regulate IL-10 secretion, and it might also mediate infectious suppression. These results demonstrate that regulatory T cells can be divided into discrete subpopulations with defined functional properties and regulatory mechanisms.
Immune regulation plays an important role in the establishment and maintenance of self-tolerance. Nevertheless, it has been difficult to conclude whether regulation is Ag specific because studies have focused on polyclonal populations of regulatory T cells. We have used in this study a murine transgenic model that generates self-reactive, regulatory T cells of known Ag specificity to determine their capacity to suppress naive T cells specific for other Ags. We show that these regulatory cells can regulate the responses of naive T cells with the same TCR specificity, but do not inhibit T cell proliferation or differentiation of naive T cells specific for other Ags. These results demonstrate that immune regulation may be more Ag specific than previously proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.