A co‐rotated formulation of the intermediate configuration is derived in a thermodynamically consistent manner. As a result of this formulation, algorithmic differentiation (AD) and the equations of the material model can be combined directly, i.e., the equations can be implemented into the AD tool and the corresponding derivatives can be calculated using AD. This is not possible when the equations are given in terms of the intermediate configuration, since the multiplicative decomposition suffers from an inherent rotational non‐uniqueness. Moreover, a novel stress‐driven kinematic growth model is presented that takes homeostasis and fiber reorientation into account and is based on the co‐rotated formulation. A numerical example reveals the promising potential of both the co‐rotated formulation and the stress‐driven growth model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.