The type II seesaw mechanism is an attractive way to generate the observed light neutrino masses. It postulates a SU(2) L -triplet scalar field, which develops an induced vacuum expectation value after electroweak symmetry breaking, giving masses to the neutrinos via its couplings to the lepton SU(2) L -doublets. When the components of the triplet field have masses around the electroweak scale, the model features a rich phenomenology. We discuss the current allowed parameter space of the minimal low scale type II seesaw model, taking into account all relevant constraints, including charged lepton flavour violation as well as collider searches. We point out that the symmetry protected low scale type II seesaw scenario, where an approximate "lepton number"-like symmetry suppresses the Yukawa couplings of the triplet to the lepton doublets, is still largely untested by the current LHC results. In part of this parameter space the triplet components can be long-lived, potentially leading to a characteristic displaced vertex signature where the doubly-charged component decays into same-sign charged leptons. By performing a detailed analysis at the reconstructed level we find that already at the current run of the LHC a discovery would be possible for the considered parameter point, via dedicated searches for displaced vertex signatures. The discovery prospects are further improved at the HL-LHC and the FCChh/SppC.
High energy collisions at the High-Luminosity Large Hadron Collider (LHC) produce a large number of particles along the beam collision axis, outside of the acceptance of existing LHC experiments. The proposed Forward Physics Facility (FPF), to be located several hundred meters from the ATLAS interaction point and shielded by concrete and rock, will host a suite of experiments to probe standard model (SM) processes and search for physics beyond the standard model (BSM). In this report, we review the status of the civil engineering plans and the experiments to explore the diverse physics signals that can be uniquely probed in the forward region. FPF experiments will be sensitive to a broad range of BSM physics through searches for new particle scattering or decay signatures and deviations from SM expectations in high statistics analyses with TeV neutrinos in this low-background environment. High statistics neutrino detection will also provide valuable data for fundamental topics in perturbative and non-perturbative QCD and in weak interactions. Experiments at the FPF will enable synergies between forward particle production at the LHC and astroparticle physics to be exploited. We report here on these physics topics, on infrastructure, detector, and simulation studies, and on future directions to realize the FPF’s physics potential.
We explore the constraints current collider searches place on a QCD-like dark sector. A combination of multi-jet, multi-jet plus missing energy and emerging jets searches is used to derive constraints on the mediator mass across the full range of the dark meson lifetimes for the first time.The dark sector inherits a flavour structure from the coupling between the dark quarks and the SM quarks through the mediator. When this is taken into account, the differently flavoured dark pions become distinguishable through their lifetime. We show that also in these cases the above mentioned searches remain sensitive, and we obtain limits on the mediator mass also for the flavoured scenario.We then contrast the constraints from collider searches with direct detection bounds on the dark matter candidate itself in both the flavoured and unflavoured scenario. Using a simple prescription it becomes possible to display all constraints in the dark matter and mediator mass plane. Constraints from direct detection tend to be stronger than the collider constraints, unless the coupling to the first generation quarks is suppressed, in which case the collider searches place the most stringent limits on the parameter space.
Axion-like particles (ALPs) are ubiquitous in models of new physics explaining some of the most pressing puzzles of the Standard Model. However, until relatively recently, little attention has been paid to its interplay with flavour. In this work, we study in detail the phenomenology of ALPs that exclusively interact with up-type quarks at the tree-level, which arise in some well-motivated ultra-violet completions such as QCD-like dark sectors or Froggatt-Nielsen type models of flavour. Our study is performed in the low-energy effective theory to highlight the key features of these scenarios in a model independent way. We derive all the existing constraints on these models and demonstrate how upcoming experiments at fixed-target facilities and the LHC can probe regions of the parameter space which are currently not excluded by cosmological and astrophysical bounds. We also emphasize how a future measurement of the currently unavailable meson decay D → π + invisible could complement these upcoming searches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.