Tissue resident mesenchymal stem cells (MSCs) are known to participate in tissue regeneration that follows cell turnover, apoptosis, or necrosis. It has been long known that aging impedes an organism's repair/regeneration capabilities. In order to study the age associated changes, the molecular characteristics of adipose tissue derived MSCs (ASCs) from three age groups of healthy volunteers, i.e., young, middle aged, and aged were investigated. The number and multilineage differentiation potential of ASCs declined with age. Aging reduces the proliferative capacity along with increases in cellular senescence. A significant increase in quiescence of G2 and S phase was observed in ASCs from aged donors. The expression of genes related to senescence such as CHEK1 and cyclin-dependent kinase inhibitor p16(ink4a) was increased with age, however genes of apoptosis were downregulated. Further, an age-dependent abnormality in the expression of DNA break repair genes was observed. Global microRNA analysis revealed an abnormal expression of mir-27b, mir-106a, mir-199a, and let-7. In ubiquitously distributed adipose tissue (and ASCs), aging brings about important alterations, which might be critical for tissue regeneration and homeostasis. Our findings therefore provide a better understanding of the mechanism(s) involved in stem cell aging and regenerative potential, and this in turn may affect tissue repair that declines with aging.
Breast cancer tissue is a heterogeneous cellular milieu comprising cancer and host cells. The interaction between breast malignant and non-malignant cells takes place in breast tumor microenvironment (TM), and has a crucial role in breast cancer progression. In addition to cellular component of TM, it mainly consists of cytokines released by tumor cells. The tumor-tropic capacity of mesenchymal stem cells (MSCs) and their interaction with breast TM is an active area of investigation. In the present communication, the interplay between the breast resident adipose tissue-derived MSCs (B-ASCs) and breast TM was studied. It was found that a distinct subset of B-ASCs display a strong affinity for conditioned media (CM) from two breast cancer cell lines, MDA-MB 231 (MDA-CM) and MCF-7 (MCF-CM). The expressions of several cytokines including angiogenin, GM-CSF, IL-6, GRO-α and IL-8 in MDA-CM and MCF-CM have been identified. Upon functional analysis a crucial role for GRO-α and IL-8 in B-ASCs migration was detected. The B-ASC migration was found to be via negative regulation of RECK and enhanced expression of MMPs. Furthermore, transcriptome analysis showed that migratory subpopulation express both pro- and anti-tumorigenic genes and microRNAs (miRNA). Importantly, we observed that the migratory cells exhibit similar gene and miRNA attributes as those seen in B-ASCs of breast cancer patients. These findings are novel and suggest that in breast cancer, B-ASCs migrate to the proximity of tumor foci. Characterization of the molecular mechanisms involved in the interplay between B-ASCs and breast TM will help in understanding the probable role of B-ASCs in breast cancer development, and could pave way for anticancer therapies.
BackgroundTissue resident mesenchymal stem cells (MSCs) are multipotent, self-renewing cells known for their differentiation potential into cells of mesenchymal lineage. The ability of single cell clones isolated from adipose tissue resident MSCs (ASCs) to differentiate into cells of hematopoietic lineage has been previously demonstrated. In the present study, we investigated if the hematopoietic differentiated (HD) cells derived from ASCs could productively be infected with HIV-1.ResultsHD cells were generated by differentiating clonally expanded cultures of adherent subsets of ASCs (CD90+, CD105+, CD45-, and CD34-). Transcriptome analysis revealed that HD cells acquire a number of elements that increase their susceptibility for HIV-1 infection, including HIV-1 receptor/co-receptor and other key cellular cofactors. HIV-1 infected HD cells (HD-HIV) showed elevated p24 protein and gag and tat gene expression, implying a high and productive infection. HD-HIV cells showed decreased CD4, but significant increase in the expression of CCR5, CXCR4, Nef-associated factor HCK, and Vpu-associated factor BTRC. HIV-1 restricting factors like APOBEC3F and TRIM5 also showed up regulation. HIV-1 infection increased apoptosis and cell cycle regulatory genes in HD cells. Although undifferentiated ASCs failed to show productive infection, HIV-1 exposure increased the expression of several hematopoietic lineage associated genes such as c-Kit, MMD2, and IL-10.ConclusionsConsidering the presence of profuse amounts of ASCs in different tissues, these findings suggest the possible role that could be played by HD cells derived from ASCs in HIV-1 infection. The undifferentiated ASCs were non-permissive to HIV-1 infection; however, HIV-1 exposure increased the expression of some hematopoietic lineage related genes. The findings relate the importance of ASCs in HIV-1 research and facilitate the understanding of the disease process and management strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.