Pre-clinical studies indicate that efficient retrovirus-mediated gene transfer into hematopoietic stem cells and progenitor cells can be achieved by co-localizing retroviral particles and target cells on specific adhesion domains of fibronectin. In this pilot study, we used this technique to transfer the human multidrug resistance 1 gene into stem and progenitor cells of patients with germ cell tumors undergoing autologous transplantation. There was efficient gene transfer into stem and progenitor cells in the presence of recombinant fibronectin fragment CH-296. The infusion of these cells was associated with no harmful effects and led to prompt hematopoietic recovery. There was in vivo vector expression, but it may have been limited by the high rate of aberrant splicing of the multidrug resistance 1 gene in the vector. Gene marking has persisted more than a year at levels higher than previously reported in humans.
In the absence of conclusive assays capable of determining the functionality of ex vivo expanded human hematopoietic progenitor cells, we combined cell tracking with the membrane dye PKH2, immunostaining for CD34, and limiting dilution analysis to estimate the frequency of long-term hematopoietic culture-initiating cells (LTHC-ICs) among de novo-generated CD34+ cells. Umbilical cord blood (CB) and bone marrow (BM) CD34+ cells were stained with PKH2 on day 0 and cultured with stem cell factor (SCF) and interleukin-3 (IL-3) in short-term stromal cell-free suspension cultures. Proliferation of CD34+ cells in culture was tracked through their PKH2 fluorescence relative to day 0 and the continued expression of CD34. As such, it was possible to identify cells that had divided while maintaining the expression of CD34 (CD34+PKH2dim) and others that expressed CD34 but had not divided (CD34+PKH2bright). In all such cultures, a fraction of both BM and CB CD34+ cells failed to divide in response to cytokines and persisted in culture for up to 10 days as CD34+PKH2bright cells. Between days 5 and 7 of culture, CD34+PKH2bright and CD34+PKH2dim cells were sorted in a limiting dilution scheme into 96-well plates prepared with medium, SCF, IL-3, IL-6, granulocyte-macrophage colony-stimulating factor, and erythropoietin. Cells proliferating in individual wells were assayed 2 weeks later for their content of clonogenic progenitors and the percentage of negative wells was used to calculate the frequency of LTHC-ICs in each population. Among fresh isolated BM and CB CD34+ cells, the frequencies of LTHC-ICs were 2.01% +/- 0.98% (mean +/- SEM) and 7.56% +/- 2.48%, respectively. After 5 to 7 days in culture, 3.00% +/- 0.56% of ex vivo-expanded BM CD34+PKH2bright cells and 4.46% +/- 1.10% of CD34+PKH2dim cells were LTHC-ICs. In contrast, the frequency of LTHC-IC in ex vivo expanded CB CD34+ cells declined drastically, such that only 3.87% +/- 2.06% of PKH2bright and 2.29% +/- 1.75% of PKH2dim cells were determined to be initiating cells after 5 to 7 days in culture. However, when combined with a calculation of the net change in the number of CD34+ cells in culture, the sum total of LTHC-ICs in both BM and CB cells declined in comparison to fresh isolated cells, albeit to a different degree between the two tissues.(ABSTRACT TRUNCATED AT 400 WORDS)
We have previously reported the ability of uncharacterized human bone marrow (BM) cells to engraft into preimmune fetal sheep, thereby creating sheep-human chimera suitable for in vivo examination of the properties of human hematopoietic stem cells (HSC). Adult human bone marrow CD34+ HLA-DR- cells have been extensively characterized in vitro and have been demonstrated to contain a number of primitive hematopoietic progenitor cells (PHPC). However, the capacity of such highly purified populations of human marrow CD34+ HLA-DR- cells to undergo in vivo self-renewal and multipotential lymphohematopoietic differentiation has not been previously demonstrated. To achieve that, human CD34+ HLA-DR- cells were transplanted in utero into immunoincompetent fetal sheep to investigate the BM-populating potential of these cells. Long-term chimerism, sustained human hematopoiesis, and expression of human cells belonging to all human blood cell lineages were demonstrated in two animals for more than 7 months' posttransplantation. Chimeric BM contained erythroid, granulocytic/monocytic, and megakaryocytic hematopoietic progenitor cells, as well as the primitive high proliferative potential colony- forming cell (HPP-CFC). Under a variety of in vitro experimental conditions, chimeric BM cells gave rise to human T cells expressing T- lymphocyte-specific markers, human natural killer (NK) cells, and human IgG-producing B cells. In vivo expansion and possibly self-renewal of transplanted PHPC was confirmed by the detection in chimeric BM 130 days' posttransplantation of CD34+ HLA-DR- cells, the phenotype of human cells constituting the stem-cell graft. These studies demonstrate not only the BM-populating capacity, multipotential differentiation, and most likely self-renewal capabilities of human CD34+ HLA-DR- cells, but also that this BM population contains human HSC. Furthermore, it appears that this animal model of xenogeneic stem-cell transplantation is extremely useful for in vivo examination of human hematopoiesis and the behavioral and functional characteristics of human HSC.
Bone marrow (BM) CD34+ cells residing in the G0 phase of cell cycle may be the most suited candidates for the examination of cell cycle activation and proliferation of primitive hematopoietic progenitor cells (HPCs). We designed a double simultaneous labeling technique using both DNA and RNA staining with Hoechst 33342 and Pyronin Y, respectively, to isolate CD34+ cells residing in G0(G0CD34+ ). Using long-term BM cultures and limiting dilution analysis, G0CD34+ cells were found to be enriched for primitive HPCs. In vitro proliferation of G0CD34+ cells in response to sequential cytokine stimulation was examined in a two-step assay. In the first step, cells received a primary stimulation consisting of either stem cell factor (SCF), Flt3-ligand (FL), interleukin-3 (IL-3), or IL-6 for 7 days. In the second step, cells from each group were washed and split into four or more groups, each of which was cultured again for another week with one of the four primary cytokines individually, or in combination. Tracking of progeny cells was accomplished by staining cells with PKH2 on day 0 and with PKH26 on day 7. Overall examination of proliferation patterns over 2 weeks showed that cells could progress into four phases of proliferation. Phase I contained cytokine nonresponsive cells that failed to proliferate. Phase II contained cells dividing up to three times within the first 7 days. Phases III and IV consisted of cells dividing up to five divisions and greater than six divisions, respectively, by the end of the 14-day period. Regardless of the cytokine used for primary stimulation, G0CD34+ cells moved only to phase II by day 7, whereas a substantial percentage of cells incubated with SCF or FL remained in phase I. Cells cultured in SCF or FL for the entire 14-day period did not progress beyond phase III but proliferated into phase IV (with <20% of cells remaining in phases I and II) if IL-3, but not IL-6, was substituted for either cytokine on day 7. G0CD34+ cells incubated with IL-3 for 14 days proliferated the most and progressed into phase IV; however, when SCF was substituted on day 7, cells failed to proliferate into phase IV. Most intriguing was a group of cells, many of which were CD34+, detected in cultures initially stimulated with IL-3, which remained as a distinct population, mostly in G0 /G1 , unable to progress out of phase II regardless of the nature of the second stimulus received on day 7. A small percentage of these cells expressed cyclin E, suggesting that their proliferation arrest may have been mediated by a cyclin-related disruption in cell cycle. These results suggest that a programmed response to sequential cytokine stimulation may be part of a control mechanism required for maintenance of proliferation of primitive HPCs and that unscheduled stimulation of CD34+ cells residing in G0 may result in disruption of cell-cycle regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.