Cyclin D1 is a multifaceted regulator of both transcription and cell-cycle progression that exists in two distinct isoforms, cyclin D1a and D1b. In the prostate, cyclin D1a acts through discrete mechanisms to negatively regulate androgen receptor (AR) activity and thus limit androgen-dependent proliferation. Accordingly, cyclin D1a is rarely overexpressed in prostatic adenocarcinoma and holds little prognostic value in this tumor type. However, a common polymorphism (A870) known to facilitate production of cyclin D1b is associated with increased prostate cancer risk. Here we show that cyclin D1b is expressed at high frequency in prostate cancer and is up-regulated in neoplastic disease. Furthermore, our data demonstrate that, although cyclin D1b retains AR association, it is selectively compromised for AR regulation. The altered ability of cyclin D1b to regulate the AR was observed by using both in vitro and in vivo assays and was associated with compromised regulation of AR-dependent proliferation. Consistent with previous reports, expression of cyclin D1a inhibited cell-cycle progression in AR-dependent prostate cancer cells. Strikingly, cyclin D1b significantly stimulated proliferation in this cell type. AR-negative prostate cancer cells were nonresponsive to cyclin D1 (a or b) expression, indicating that defects in AR corepressor function yield a growth advantage specifically in AR-dependent cells. In summary, these studies indicate that the altered AR regulatory capacity of cyclin D1b contributes to its association with increased prostate cancer risk and provide evidence of cyclin D1b-mediated transcriptional regulation.corepressor ͉ G870A ͉ polymorphism ͉ cell cycle ͉ thyroid hormone receptor 
Androgen receptor regulation is pivotal for prostate growth and development. Activation of the receptor is dictated by association with androgen (ligand) and through interaction with co-activators and co-repressors. We have shown previously that cyclin D1 functions as a co-repressor to inhibit ligand-dependent androgen receptor activation. We demonstrate that cyclin D1 directly binds the N terminus of the androgen receptor and that this interaction is independent of ligand. Furthermore, we show that the interaction occurs in the nucleus and does not require the LXXLL motif of cyclin D1. Although two distinct transactivation domains exist in the N terminus (AF-1 and AF-5), the data shown support the hypothesis that cyclin D1 targets the AF-1 transactivation function. The constitutively active AF-5 domain was refractory to cyclin D1 inhibition. By contrast, cyclin D1 completely abolished androgen receptor activity, even in the presence of potent androgen receptor co-activators. This action of cyclin D1 at least partially required de-acetylase activity. Finally, we show that transient, ectopic expression of cyclin D1 results in reduced cell cycle progression in androgen-dependent LNCaP cells independent of CDK4 association. Collectively, our data support a model wherein cyclin D1 has a mitogenic (CDK4-dependent) function and an anti-mitogenic function (dependent on regulation of the AF-1 domain) that can collectively control the rate of androgendependent cellular proliferation. These findings provide insight into the non-cell cycle functions of cyclin D1 and provide the impetus to study its pleiotropic effects in androgen-dependent cells, especially prostatic adenocarcinomas.
The Kaposi's sarcoma-associated herpesvirus (KSHV/HHV8) is associated with Kaposi's sarcoma (KS) as well as primary effusion lymphomas (PEL). The expression of viral proteins capable of inactivating the p53 tumor suppressor protein has been implicated in KSHV oncogenesis. However, DNA-damaging drugs such as doxorubicin are clinically efficacious against PEL and KS, suggesting that p53 signaling remains intact despite the presence of KSHV. To investigate the functionality of p53 in PEL, we examined the response of a large number of PEL cell lines to doxorubicin. Two out of seven (29%) PEL cell lines harbored a mutant p53 allele (BCBL-1 and BCP-1) which led to doxorubicin resistance. In contrast, all other PEL containing wild-type p53 showed DNA damage-induced cell cycle arrest, p53 phosphorylation, and p53 target gene activation. These data imply that p53-mediated DNA damage signaling was intact. Supporting this finding, chemical inhibition of p53 signaling in PEL led to doxorubicin resistance, and chemical activation of p53 by the Hdm2 antagonist Nutlin-3 led to unimpaired induction of p53 target genes as well as growth inhibition and apoptosis.
The androgen receptor (AR) is a member of the nuclear receptor superfamily, the activity of which is critical for the development and progression of prostate cancer. We and others have previously demonstrated that cyclin D1 is a potent corepressor of the AR. Although cyclin D1 is suspected to recruit histone deacetylases to the AR complex, previous studies have demonstrated that this activity alone is insufficient for cyclin D1 function. Here, we uncover a novel, secondary means of cyclin D1-mediated repression, through modulation of AR amino-carboxy terminal interactions. We show that cyclin D1 predominantly binds the N-terminal domain of the AR, dependent on the AR 23FxxLF27 motif. Through this motif, cyclin D1 abrogates the ability of the AR N-terminal domain to interact with the C terminus. Secondary amino-terminal domain sites capable of fostering interaction with the C terminus were refractory to cyclin D1 action, indicating that the ability of cyclin D1 to modulate AR amino-carboxy terminal interactions is specific to 23FxxLF27. Deletion of the N-terminal cyclin D1 binding site severely compromised AR activity (due to loss of FxxLF) but unmasked a repressor action through interaction with the AR C terminus. In summary, these data reveal novel, unexpected mechanisms of cyclin D1 activity and demonstrate that this function of cyclin D1 is critical for AR modulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.