The mosquito-borne zoonotic flaviviruses West Nile virus (WNV) and Usutu virus (USUV) are endemic in many European countries and emerged in Germany in recent years. Due to the increasing overlap of their distribution areas and their similar epidemiology, coinfections of WNV and USUV are possible. Indeed, coinfections in vertebrate hosts as a rare event have already been reported from some countries including Germany. However, it is largely unknown whether and to what extent coinfections could affect the vector competence of mosquitoes for WNV and USUV. For this purpose, the mosquito species Culex pipiens biotype pipiens, Culex pipiens biotype molestus, and Aedes vexans were orally infected in mono- and simultaneous coinfections with German strains of WNV and USUV. Mosquitoes were incubated for 14 days at 26°C, 85% relative humidity, and a 16 : 8 light-dark photocycle, before they were dissected and forced to salivate. The results showed a decrease in USUV susceptibility in Culex pipiens biotype pipiens, an increase in USUV susceptibility in Aedes vexans, and no obvious interaction between both viruses in Culex pipiens biotype molestus. Vector competence for WNV appeared to be unaffected by a simultaneous occurrence of USUV in all tested mosquito species. Coinfections with both viruses were only found in Culex mosquitoes, and cotransmission of WNV and USUV was observed in Culex pipiens biotype molestus. Overall, our results show that viral interactions between WNV and USUV vary between mosquito species, and that the interaction mainly occurs during infection and replication in the mosquito midgut. The results of this study confirm that to fully understand the interaction between WNV and USUV, studies with various mosquito species are necessary. In addition, we found that even mosquito species with a low susceptibility to both viruses, such as Ae. vexans, can play a role in their transmission in areas with cocirculation.
West Nile virus (WNV) is a zoonotic flavivirus transmitted by mosquitoes as a biological vector. Because of its biting behavior, the widespread snow-melt mosquito Aedes punctor could be a potential bridge vector for WNV to humans and nonhuman mammals. However, little is known on its role in transmission of WNV. The aim of this study was to determine the vector competence of German Ae. punctor for WNV lineages 1 and 2. Field-collected larvae and pupae were reared to adults and offered infectious blood containing either an Italian WNV lineage 1 or a German WNV lineage 2 strain via cotton stick feeding. Engorged females were incubated for 14/15 or 21 days at 18 °C. After incubation; surviving mosquitoes were dissected and forced to salivate. Mosquito bodies with abdomens, thoraces and heads, legs plus wings and saliva samples were investigated for WNV RNA by RT-qPCR. Altogether, 2/70 (2.86%) and 5/85 (5.88%) mosquito bodies were found infected with WNV lineage 1 or 2, respectively. In two mosquitoes, viral RNA was also detected in legs and wings. No saliva sample contained viral RNA. Based on these results, we conclude that Ae. punctor does not play an important role in WNV transmission in Germany.
West Nile virus (WNV) is a zoonotic mosquito-borne virus classified as family Flaviviridae and genus Flavivirus. The first WNV outbreak in humans in the Republic of Serbia was recorded in 2012. Equids and dogs can show clinical symptoms after WNV infection and are often used as sentinels. This study aimed to (i) give insight into seropositivity for WNV in clinically healthy dog and horse sera in different regions of Serbia and (ii) compare diagnostic value of 'in-house' and commercially available indirect immunofluorescence (IFA) and enzyme-linked immunoassay (ELISA) tests to 'gold standard' virus neutralization test (VNT). Due to cross-reactivity, sera were tested for Usutu virus and tick-borne encephalitis virus in VNT based on the epidemiological data of field presence. Blood sera of dogs (n = 184) and horses (n = 232) were collected from 2011 to 2013. The seropositivity was confirmed by VNT in 36.9 % tested dog sera and 34.9% tested horse sera with highest positivity in regions near two big rivers, while in four dog and seven horse sera, positivity resulted from Usutu virus infection. Comparative results of diagnostic tests in dogs ranged from 18.7 % seropositivity by 'in-house' ELISA This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
The increasing threat of arboviruses such as West Nile virus (WNV) and Usutu virus (USUV) requires the fast and efficient surveillance of these viruses. The examination of mosquitoes takes up an important part; however, these investigations are usually very time-consuming. An alternative sample type for arbovirus surveillance might be mosquito excreta. In order to determine the excretion dynamics under laboratory conditions, laboratory colonies of Aedes vexans and Culex pipiens biotype molestus were infected with WNV, USUV or tick-borne encephalitis virus (TBEV). After infection, the excreta were sampled and investigated for viral RNA. Excretion of viral RNA together with infectious blood meal could be detected up to five days after infection. Further excretion seemed to correlate with a disseminated infection in mosquitoes, at least after USUV infection. In addition, it could be determined that the amount of viral RNA in the excretions correlated positively with the viral load in the mosquito bodies. Overall, this study shows that the usage of mosquito excreta as a sample type for surveillance enables the detection of endemic viruses (WNV, USUV) as well as non-mosquito-borne viruses (TBEV). In addition, examination of viral shedding during vector competence studies can provide insights into the course of infection without sacrificing animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.