Our data reveal a central role of the innate immune system, namely Toll-like receptor 3, to mediate angiogenesis upon release of cytoplasmic RNAs by mechanotransduction of SWT.
Acute kidney injury (AKI) is one of the most important complications in hospitalized patients and its pathomechanisms are not completely elucidated. We hypothesize that signaling via toll-like receptor (TLR)-3, a receptor that is activated upon binding of double-stranded nucleotides, might play a crucial role in the pathogenesis of AKI following ischemia and reperfusion (IR). Male adult C57Bl6 wild-type (wt) mice and TLR-3 knock-out (-/-) mice were subjected to 30 minutes bilateral selective clamping of the renal artery followed by reperfusion for 30 min 2.5h and 23.5 hours or subjected to sham procedures. TLR-3 down-stream signaling was activated already within 3 h of ischemia and reperfusion in post-ischemic kidneys of wt mice lead to impaired blood perfusion followed by a strong pro-inflammatory response with significant neutrophil invasion. In contrast, this effect was absent in TLR-3-/- mice. Moreover, the quick TLR-3 activation resulted in kidney damage that was histomorphologically associated with significantly increased apoptosis and necrosis rates in renal tubules of wt mice. This finding was confirmed by increased kidney injury marker NGAL in wt mice and a better preserved renal perfusion after IR in TLR-3-/- mice than wt mice. Overall, the absence of TLR-3 is associated with lower cumulative kidney damage and maintained renal blood perfusion within the first 24 hours of reperfusion. Thus, we conclude that TLR-3 seems to participate in the pathogenesis of early acute kidney injury.
The lung is, more than other solid organs, susceptible for ischemia reperfusion injury after orthotopic transplantation. Corticosteroids are known to potently suppress pro-inflammatory processes when given in the post-operative setting or during rejection episodes. Whereas their use has been approved for these clinical indications, there is no study investigating its potential as a preservation additive in preventing vascular damage already in the phase of ischemia. To investigate these effects we performed orthotopic lung transplantations (LTX) in the rat. Prednisolone was either added to the perfusion solution for lung preservation or omitted and rats were followed for 48 hours after LTX. Prednisolone preconditioning significantly increased survival and diminished reperfusion edema. Hypoxia induced vasoactive cytokines such as VEGF were reduced. Markers of leukocyte invasiveness like matrix metalloprotease (MMP)-2, or common pro-inflammatory molecules like the CXCR4 receptor or the chemokine (C-C motif) ligand (CCL)-2 were downregulated by prednisolone. Neutrophil recruitment to the grafts was only increased in Perfadex treated lungs. Together with this, prednisolone treated animals displayed significantly reduced lung protein levels of neutrophil chemoattractants like CINC-1, CINC-2α/β and LIX and upregulated tissue inhibitor of matrix metalloproteinase (TIMP)-1. Interestingly, lung macrophage invasion was increased in both, Perfadex and prednisolone treated grafts, as measured by MMP-12 or RM4. Markers of anti-inflammatory macrophage transdifferentiation like MRC-1, IL-13, IL-4 and CD163, significantly correlated with prednisolone treatment. These observations lead to the conclusion that prednisolone as an additive to the perfusion solution protects from hypoxia triggered danger signals already in the phase of ischemia and thus reduces graft edema in the phase of reperfusion. Additionally, prednisolone preconditioning might also lead to macrophage polarization as a beneficial long-term effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.