Having insight into the causal associations in a complex system facilitates decision making, e.g., for medical treatments, urban infrastructure improvements or financial investments. The amount of observational data grows, which enables the discovery of causal relationships between variables from observation of their behaviour in time. Existing methods for causal discovery from time series data do not yet exploit the representational power of deep learning. We therefore present the Temporal Causal Discovery Framework (TCDF), a deep learning framework that learns a causal graph structure by discovering causal relationships in observational time series data. TCDF uses attention-based convolutional neural networks combined with a causal validation step. By interpreting the internal parameters of the convolutional networks, TCDF can also discover the time delay between a cause and the occurrence of its effect. Our framework learns temporal causal graphs, which can include confounders and instantaneous effects. Experiments on financial and neuroscientific benchmarks show state-of-the-art performance of TCDF on discovering causal relationships in continuous time series data. Furthermore, we show that TCDF can circumstantially discover the presence of hidden confounders. Our broadly applicable framework can be used to gain novel insights into the causal dependencies in a complex system, which is important for reliable predictions, knowledge discovery and data-driven decision making.
Entity disambiguation is the task of mapping ambiguous terms in natural-language text to its entities in a knowledge base. It finds its application in the extraction of structured data in RDF (Resource Description Framework) from textual documents, but equally so in facilitating artificial intelligence applications, such as Semantic Search, Reasoning and Question & Answering. We propose a new collective, graph-based disambiguation algorithm utilizing semantic entity and document embeddings for robust entity disambiguation. Robust thereby refers to the property of achieving better than state-of-the-art results over a wide range of very different data sets. Our approach is also able to abstain if no appropriate entity can be found for a specific surface form. Our evaluation shows, that our approach achieves significantly (>5%) better results than all other publicly available disambiguation algorithms on 7 of 9 datasets without data set specific tuning. Moreover, we discuss the influence of the quality of the knowledge base on the disambiguation accuracy and indicate that our algorithm achieves better results than non-publicly available state-of-the-art algorithms.
Figure 1: A ProtoTree is a globally interpretable model faithfully explaining its entire reasoning (left, partially shown).Additionally, the decision making process for a single prediction can be followed (right): the presence of a red chest and black wing, and the absence of a black stripe near the eye, identifies a Scarlet Tanager. A pruned ProtoTree learns roughly 200 prototypes for CUB (dataset with 200 bird species), making only 8 local decisions on average for one test image.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.